American Mineralogist, Volume 107, pages 313-317, 2022

LETTER HP-PdF₂-type FeCl₂ as a potential Cl-carrier in the deep Earth

Hongsheng Yuan^{1,*,†}, Lianjie Man¹, Duck Young Kim¹, Dmitry Popov², Yue Meng², Eran Greenberg^{3,‡}, Vitali Prakapenka³, and Li Zhang^{1,*}

¹Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China ²HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A. ³Center for Advanced Radiations Sources, University of Chicago, Chicago, Illinois 60637, U.S.A.

ABSTRACT

We report for the first time the formation of a HP-PdF₂-type FeCl₂ phase (space group $Pa\overline{3}$), through high pressure-temperature (*P*-*T*) reactions in the hydrous systems (Mg_{0.6}Fe_{0.4})SiO₃-H₂O-NaCl and FeO₂H-NaCl in a laser-heated diamond-anvil cell up to 108 GPa and 2000 K. Applying single-crystal X-ray diffraction (XRD) analysis to individual submicrometer-sized grains, we have successfully determined the crystal structure of the as-synthesized FeCl₂ phase, in agreement with our theoretical structure search results. In situ high *P*-*T* XRD data revealed the substitution of Cl for OH(O) in such a cubic $Pa\overline{3}$ structure, demonstrating that this topology is a potential host for both H and Cl in the deep Earth. The chemical analysis of the recovered sample showed that the post-perovskite phase contains considerable amounts of Na₂O and Fe₂O₃. The coexistence of the cubic FeCl₂ phase and post-perovskite suggests that the lowermost mantle could be a potential reservoir of Cl. The possible presence of volatiles such as H and Cl in the deep lower mantle would impact the composition and iron valence state of the post-perovskite phase.

Keywords: Iron chloride, multigrain X-ray diffraction, lower mantle, hydrogen and chlorine cycle, post-perovskite; Physics and Chemistry of Earth's Deep Mantle and Core