Letter

Inherited Eocene magmatic tourmaline captured by the Miocene Himalayan leucogranites

JINSHENG HAN¹, PETE HOLLINGS², FRED JOURDAN³, YUNCHUAN ZENG⁴, AND HUAYONG CHEN^{1,*}

¹Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

²Department of Geology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada ³Western Australian Argon Isotope Facility, Department of Applied Geology and JdL-CMS, Curtin University, GPO Box U1987, Perth,

Western Australia 6845, Australia

⁴State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China

ABSTRACT

The Miocene Cuonadong leucogranites in the easternmost section of the Tethyan Himalaya, Southern Tibet, are characterized by two types of tourmaline. Tourmaline occurs as needle-like crystals in the two-mica \pm tourmaline granites (Tur G) and large patches in the pegmatites (Tur P). Both the granite and the pegmatites yield Miocene ages (ca. 20 Ma) based on monazite U(-Th)-Pb dating, whereas 40 Ar/ 39 Ar geochronology of the coarse-grained tourmalines (Tur P) crosscut by pegmatite veins yielded an Eocene mini-plateau age of 43 ± 6 Ma. Major element concentrations of tourmaline indicate that both Tur P and Tur G belong to the schorl group with a magmatic origin, but trace elements such as V indicate that they are not cogenetic. Boron isotopes suggest that Tur P (average –9.76‰) was derived from typical crustal sources, whereas Tur G (average –7.65‰) contains relatively more mafic input. The capture of Eocene tourmaline by the Miocene leucogranites at Cuonadong suggests that the crustally derived Eocene magmatism may have occurred in the southern Tethyan Himalaya. Identification of the inherited magmatic tourmaline (Tur P), although not common, challenges the current application of tourmaline chemistry to the investigation of magmatic-hydrothermal systems.

Keywords: Inherited tourmaline, Himalayan leucogranite, ⁴⁰Ar/³⁹Ar and U(-Th)-Pb geochronology, B isotope