Structure of NaFeSiO₄, NaFeSi₂O₆, and NaFeSi₃O₈ glasses and glass-ceramics Mostafa Ahmadzadeh^{1,3,†}, Alex Scrimshire², Lucy Mottram⁴, Martin C. Stennett⁴, Neil C. Hyatt⁴, Paul A. Bingham², and John S. McCloy^{1,3,4,5,*}

¹Materials Science and Engineering Program, Washington State University, Pullman, Washington 99164, U.S.A.
²Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, U.K.
³School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, U.S.A.
⁴Department of Materials Science and Engineering, The University of Sheffield, S1 3JD, U.K.
⁵Institut de Physique du Globe de Paris, Équipe Géomatériaux, Paris, France

ABSTRACT

The crystallization of iron-containing sodium silicate phases holds particular importance, both in the management of high-level nuclear wastes and in geosciences. Here, we study three as-quenched glasses and their heat-treated chemical analogs, NaFeSi₂O₆, and NaFeSi₃O₈ (with nominal stoichiometries from feldspathoid, pyroxene, and feldspar mineral groups, i.e., Si/Fe = 1, 2, and 3, respectively) using various techniques. Phase analyses revealed that as-quenched NaFeSi₀₄ could not accommodate all Fe in the glass phase (some Fe crystallizes as Fe₃O₄), whereas as-quenched NaFeSi₂O₆ and NaFeSi₃O₈ form amorphous glasses. NaFeSi₂O₆ glass is the only composition that crystallizes into its respective isochemical crystalline polymorph, i.e., aegirine, upon isothermal heat-treatment. As revealed by Mössbauer spectroscopy, iron is predominantly present as fourfold-coordinated Fe³⁺ in all glasses, though it is present as sixfold-coordinated Fe³⁺ in the aegirine crystals (NaFeSi₂O₆), as expected from crystallography. Thus, Na-Fe silicate can form a crystalline phase in which it is octahedrally coordinated, even though it is mostly tetrahedrally coordinated in the parent glasses. Thermal behavior, magnetic properties, iron redox state (including Fe *K*-edge X-ray absorption), and vibrational properties (Raman spectra) of the above compositions are discussed.

Keywords: Mössbauer, Fe redox, Raman, glass transition, X-ray absorption