The new K, Pb-bearing uranyl-oxide mineral kroupaite: Crystal-chemical implications for the structures of uranyl-oxide hydroxy-hydrates

JAKUB PLÁŠIL^{1,*}, ANTHONY R. KAMPF², TRAVIS A. OLDS³, JIŘÍ SEJKORA⁴, RADEK ŠKODA^{5,}†, PETER C. BURNS^{3,}‡, AND JIŘÍ ČEJKA⁴

¹Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic

²Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A.
³Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, U.S.A.
⁴Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, Prague 9-Horní Počernice, 193 00, Czech Republic
⁵Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic

ABSTRACT

Kroupaite (IMA 2017-031), ideally KPb_{0.5}[(UO₂)₈O₄(OH)₁₀]·10H₂O, is a new uranyl-oxide hydroxylhydrate mineral found underground in the Svornost mine, Jáchymov, Czechia. Electron-probe microanalysis (WDS) provided the empirical formula $(K_{1.28}Na_{0.07})_{\Sigma 1.35}(Pb_{0.23}Cu_{0.14}Ca_{0.05}Bi_{0.03}Co_{0.02}Al_{0.01})_{\Sigma 0.48}$ [(UO₂)_{7.90}(SO₄)_{0.04}O_{4.04}(OH)_{10.00}]·10H₂O, on the basis of 40 O atoms apfu. Sheets in the crystal structure of kroupaite adopt the fourmarierite anion topology, and therefore kroupaite belongs to the schoepitefamily of minerals with related structures differing in the interlayer composition and arrangement, and charge of the sheets. Uptake of dangerous radionuclides (⁹⁰Sr or ¹³⁵Cs) into the structure of kroupaite and other uranyl-oxide hydroxy-hydrate is evaluated based on crystal-chemical considerations and Voronoi-Dirichlet polyhedra measures. These calculations show the importance of these phases for the safe disposal of nuclear waste.

Keywords: Kroupaite, new mineral species, uranyl-oxide hydroxy-hydrate, crystal structure, Voronoi-Dirichlet polyhedral, ¹³⁵Cs; ⁹⁰Sr; Jáchymov