Experimental investigation of FeCO₃ (siderite) stability in Earth's lower mantle using XANES spectroscopy

VALERIO CERANTOLA^{1,2,*,†}, MAX WILKE³, INNOKENTY KANTOR⁴, LEYLA ISMAILOVA⁵, ILYA KUPENKO⁶, CATHERINE MCCAMMON², SAKURA PASCARELLI¹, AND LEONID S. DUBROVINSKY²

¹European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
²Bayerisches Geoinstitut, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
³Institut für Erd- und Umweltwissenschaften, Universität Potsdam, Karl-Liebknecht-Straße 24, 14476 Potsdam, Germany
⁴Danmarks Tekniske Universitet, Anker Engelunds Vej 1 Bygning 101A, 2800 Kgs. Lyngby, Denmark
⁵Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Building 3, Moscow, 143026, Russia
⁶Institut f. Geowissenschaften, Universität Münster, Schlossplatz 2, 48149 Münster, Germany

ABSTRACT

We studied FeCO₃ using Fe *K*-edge X-ray absorption near-edge structure (XANES) spectroscopy at pressures up to 54 GPa and temperatures above 2000 K. First-principles calculations of Fe at the *K*-edge in FeCO₃ were performed to support the interpretation of the XANES spectra. The variation of iron absorption edge features with pressure and temperature in FeCO₃ matches well with recently reported observations on FeCO₃ at extreme conditions, and provides new insight into the stability of Fe-carbonates in Earth's mantle. Here we show that at conditions of the mid-lower mantle, ~50 GPa and ~2200 K, FeCO₃ melts and partially decomposes to high-pressure Fe₃O₄. Carbon (diamond) and oxygen are also inferred products of the reaction. We constrained the thermodynamic phase boundary between crystalline FeCO₃ and melt to be at 51(1) GPa and ~1850 K. We observe that at 54(1) GPa, temperature-induced spin crossover of Fe²⁺ takes place from low to high spin such that at 1735(100) K, all iron in FeCO₃ is in the high-spin state. A comparison between experiment and theory provides a more detailed understanding of FeCO₃ decomposition observed in X-ray absorption spectra and helps to explain spectral changes due to pressure-induced spin crossover in FeCO₃ at ambient temperature.

Keywords: Deep carbon cycle, siderite, decomposition, melting, spin transition; Earth in Five Reactions: A Deep Carbon Perspective