American Mineralogist, Volume 104, pages 897–904, 2019

High-pressure phase transitions of clinoenstatite

JOHN D. LAZARZ^{1,*}, PRZEMYSLAW DERA², YI HU^{2,3}, YUE MENG⁴, CRAIG R. BINA¹, AND STEVEN D. JACOBSEN¹

¹Department of Earth and Planetary Sciences, Northwestern University, Evanston, Illinois 60208, U.S.A. ²Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, U.S.A.

³Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, U.S.A.

⁴HPCAT, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.

ABSTRACT

Clinoenstatite (Mg₂Si₂O₆) undergoes a well-known phase transition from a low-pressure form (LPCEN, space group $P2_1/c$) to a high-pressure form (HPCEN, space group C2/c) at ~6 GPa. High-pressure structure refinements of HPCEN were carried out based on single-crystal X-ray diffraction experiments between 9.5 and 35.5 GPa to determine its P-V equation of state and structural evolution over an expanded pressure range relevant to pyroxene metastability. The best-fit isothermal equation of state to our data combined with the five data points between 5.34 and 7.93 GPa from Angel and Hugh-Jones (1994) yields a second-order Birch-Murnaghan equation with $K_{T0} = 121(2)$ GPa and $V_0 = 403.9(5)$ Å³ (with $K'_{T0} = 4$ implied). Further reduction of misfit upon fitting a third-order Birch-Murnaghan equation is not significant at the 90% confidence level. At ~45 GPa, a transition from HPCEN to a $P2_1/c$ -structured polymorph (HPCEN2) was observed, which is isostructural to the $P2_1/c$ phase recently observed in diopside (CaMgSi₂O₆) at 50 GPa (Plonka et al. 2012) and in clinoferrosilite (Fe₂Si₂O₆) at 30–36 GPa (Pakhomova et al. 2017). Observation of HPCEN2 in Mg₂Si₂O₆ completes the third apex of the pyroxene quadrilateral wherein HPCEN2 is found, facilitating a broader view of clinopyroxene crystal chemistry at conditions relevant to metastability in the Earth's mantle along cold subduction geotherms.

Keywords: MgSiO₃, clinoenstatite, enstatite, pyroxene, single-crystal X-ray diffraction