Melting curve minimum of barium carbonate BaCO₃ near 5 GPa JUNJIE DONG^{1,*,§}, JIE LI^{1,†}, FENG ZHU^{1,}[±], ZEYU LI¹, AND RAMI FARAWI¹

¹Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.

ABSTRACT

The melting point of barium carbonate (BaCO₃) was determined at pressures up to 11 GPa using the ionic conductivity and platinum (Pt) sphere methods in a multi-anvil press. The melting point decreases with pressure from 2149 ± 50 K at 3 GPa to a fitted local minimum of 1849 K at 5.5 GPa, and then it rises with pressure to 2453 ± 50 K at 11 GPa. The fitted melting curve of BaCO₃ based on the ionic conductivity measurements is consistent with the Pt sphere measurements that were carried out independently at selected pressures. The negative slope of the BaCO₃ melting curve between 3 and 5.5 GPa indicates that the liquid is denser than the solid within this pressure range. Synchrotron X-ray diffraction (XRD) measurements in a laser-heated diamond-anvil cell (LH-DAC) showed that BaCO₃ transformed from the aragonite structure (*Pmcn*) to the post-aragonite structure (*Pmmn*) at 6.3 GPa and 1026 K as well as 8 GPa and 1100 K and the post-aragonite structure remained metastable upon quenching and only reverted back to the witherite structure upon pressure release. The local minimum near 5 GPa is attributed to the triple point where the melting curve of BaCO₃ meets a phase transition to the denser post-aragonite structure (*Pmmn*). Local minimum in the melting curves of alkaline earth carbonates would lead to incipient melting of carbonated rocks in Earth's mantle.

Keywords: Barium carbonate, melting point, density crossover, phase transition, negative melting slope, post-aragonite structure; Earth in Five Reactions: A Deep Carbon Perspective