Vestaite, (Ti⁴⁺Fe²⁺)Ti⁴⁺O₉, a new mineral in the shocked eucrite Northwest Africa 8003

RUN-LIAN PANG^{1,2}, DENNIS HARRIES², KILIAN POLLOK², AI-CHENG ZHANG^{1,*}, AND FALKO LANGENHORST^{2,3,*}

¹State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210046, China ²Institute of Geosciences, Friedrich Schiller University Jena, D-07745 Jena, Germany ³Hawai'i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai'i at Manoa, Honolulu, Hawaii 96822, U.S.A.

ABSTRACT

Our investigations on the shocked eucrite Northwest Africa (NWA) 8003 revealed the occurrence of a new mineral, vestaite [IMA 2017-068; ($Ti^{4+}Fe^{2+}$) $Ti_3^{4+}O_9$]. This mineral coexists with corundum, ilmenite, and Al-Ti-rich pyroxene in shock melt pockets. It has an empirical chemical formula of ($Ti_{0.73}^{4+}$, $Fe_{0.63}^{2+}Al_{0.60}Mn_{0.03}Mg_{0.02}Cr_{0.01}$) $Ti_3^{4+}O_9$ and the monoclinic C2/c structure of schreyerite. The ideal vestaite structure can be considered as a modular structure with an alternate intergrowth of M_3O_5 -type ($M = Ti^{4+}, Fe^{2+}, Al$) and Ti_2O_4 -type slabs. Alternatively, it can also be envisaged as a crystallographic shear structure with periodically shearing of rutile or α -PbO₂ units. Streaking and splitting of diffraction spots observed in selected-area electron diffraction patterns indicate planar defects in the modular structure of vestaite. Our observations reveal that vestaite crystallized at high pressure (≤ 10 GPa) from a melt that represents a mixture of ilmenite and silicate components. A robust constraint on its formation conditions and stability field cannot yet be provided due to the lack of experimental data for these systems. Vestaite is a new, shock-generated mineral first found in a meteorite of the howarditeeucrite-diogenite (HED) clan, the largest achondrite group. Its discovery is not only of significance to the meteoritic mineralogy, but it could also be of interest to materials science.

Keywords: Vestaite, new mineral, Northwest Africa 8003, HED meteorites, shock metamorphism