Segerstromite, Ca₃(As⁵⁺O₄)₂[As³⁺(OH)₃]₂, the first mineral containing As³⁺(OH)₃, the arsenite molecule, from the Cobriza mine in the Atacama Region, Chile

HEXIONG YANG^{1,*}, ROBERT T. DOWNS¹, ROBERT A. JENKINS¹, AND STANLEY H. EVANS¹

¹Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077, U.S.A.

ABSTRACT

A new mineral species, segerstromite, ideally $Ca_3(As^{5+}O_4)_2[As^{3+}(OH)_3]_2$, has been discovered at the Cobriza mine in the Sacramento district in the Copiapó Province, Chile. Crystals of segerstromite occur as tetrahedra, dodecahedra (up to $0.50 \times 0.50 \times 0.50$ mm), or in blocky aggregates. Associated minerals include talmessite, vladimirite, and Sr-bearing hydroxylapatite. Similar to the associated minerals, segerstromite is a secondary mineral. The new mineral is colorless in transmitted light, transparent with a white streak and vitreous luster. It is brittle and has a Mohs hardness of ~4.5. No cleavage, parting, or twinning was observed. The measured and calculated densities are 3.44(3) and 3.46 g/cm³, respectively. Optically, segerstromite is isotropic, with n = 1.731(5). It is insoluble in water or hydrochloric acid. An electron microprobe analysis yielded an empirical formula (based on 14 O apfu) $Ca_{2.98}(AsO_4)_{2.00}[As(OH)_3]_{2.00}$.

Segerstromite is cubic, with space group $I_{2,3}$ and unit-cell parameters a = 10.7627(2) Å, V = 1246.71(4) Å³, and Z = 4. Its crystal structure is constructed from three different polyhedral units: distorted CaO₈ cubes, rigid As⁵⁺O₄ arsenate tetrahedra, and neutral As³⁺(OH)₃ arsenite triangular pyramids. The Ca-groups form layers of corrugated crankshaft chains that lie parallel to the cubic axes. These chains are linked by the isolated As⁵⁺O₄ and As³⁺(OH)₃ groups. Segerstromite is the first known crystalline compound that contains the As³⁺(OH)₃ arsenite molecule, pointing to a new potential approach to remove highly toxic and mobile As³⁺(OH)₃ from drinking water.

Keywords: New mineral, segerstromite, arsenate/arsenite, crystal structure, X-ray diffraction, Raman spectrum