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aUnité Matériaux Et Transformations, Bât. C6, Univ. Lille 1, 59655 Villeneuve d’Ascq
France

Introduction

Within the thermally activated regime, the glide velocity of dislocations

is governed by the nucleation and propagation of unstable kink-pairs on the

dislocation lines under the action of resolved shear stress. This atomic-scale

process can be captured by the critical nucleation enthalpy associated with it.

These calculations are parametrized by the dislocation core structures and their

lattice friction given by the Peierls potentials. The latter is calculated by making

use of a generalized Peierls-Nabarro model (Peierls 1940; Nabarro 1947) which

itself relies on the γ-surfaces of the potential slip planes in wadsleyite at 15 GPa

(Metsue et al. 2010).

Kink-pair nucleation on collinear dissociated screw dislocations

Kink-pair modeling based on the elastic interaction model of Koizumi et al.

(1993) and adapted to collinear dissociated dislocations (Ritterbex et al. 2015)
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as they exist in wadsleyite allows to calulate the critical nucleation enthalpies

related to glide. However, kink-pair nucleation processes must occur on both

partials for the complete dislocation to move. This can happen in several dif-

ferent ways as illustrated in Fig. 1 of the main article. A kink-pair on each

partial may simultaneously nucleate so that they coincide along the partials:

”correlated” nucleation (Fig. 1a). The nucleation process may also occur inde-

pendently on both partials to which we will refer to as ”uncorrelated” nucleation.

Two end-member types of uncorrelated nucleation processes are possible: the

outward motion of the leading partial as a first unit step, followed by the in-

ward motion of the trailing partial (Fig 1b) or the inward motion of the trailing

partial as a first unitstep followed by the outward motion of the leading partial

(Fig. 1c).

Correlated nucleation can occur at 0 < τ ≤ τp, whereas uncorrelated nu-

cleation of kink-pairs exhibit lower nucleation enthalpies but is only possible at

τ ≥ τc, since the absolute energy level of the next Peierls valley associated with

the inward or outward motion of one partial, is higher than the orginal valley

as a consequence of a significant change in equilibrium stacking fault width d

and the subsequent change in stacking fault energy and elastic interaction en-

ergy between both partials (Möller 1978; Takeuchi 1995). The critical stress

τc therefore is fully determined by the properties of the dissociated dislocation

core structure.

The enthalpy variation associated with the mechanism for those kink-pair

nucleation processes can generally be described by:

∆H = ∆Eelastic + ci∆Pp + ∆Wsf + ciWp (1)

where
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Figure S1: Correlated kink-pair nucleation on collinear dissociated dislocations with equilib-
rium stacking fault width d. a) Correlated kink-pair nucleation on both partials along the
dislocation lines in the low stress end member case. b) Correlated kink-pair nucleation along
both partial lines where small changes in both stacking fault and elastic interaction energy
between the partials are allowed to occur

∆Eelastic = ∆Eξ1 + ∆Eξ2 + ∆Eξ1,ξ2 (2)

The enthalpy variation ∆H is due to the change in elastic energy ∆Eelastic,

the change in stacking fault energy ∆Wsf = ±γhw, where γ is equal to the

equilibrium stacking fault energy, the variation in Peierls energy ∆Pp and the
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plastic work ∆Wp under the action of the resolved shear stress τ . In Eq. 1,

ci = cu = 1 for uncorrelated and ci = cc = 2 for correlated kink-pair nucleation.

We want to note that Eq. (1) is equal to Eq. (2) of the main article.

All variations in the elastic energy ∆Eelastic (Eq. 2), between two consecu-

tive dislocation configurations divided into segments, are calculated considering

piecewise straight line segments within an isotropic elastic continuum by us-

ing the coplanar elastic interaction formalism formulated by Hirth and Lothe

(1982). In here, the change in elastic interaction energy between the two partial

dislocation lines is given by ∆Eξ1,ξ2 . The overall variation in elastic energy

∆Eξn (Eq. 2), is given by the total change in elastic interaction energy and the

change in self-energy of the line(s). These functions depend on the heights of

and the widths between kink-pairs, but also on the change in absolute self en-

ergy of the partial dislocations due to the creation of new line segments (see Fig.

S1). The latter is expressed in a fixed cut-off radius ρ (Hirth and Lothe 1982;

Koizumi et al. 1993). Following previous work (Koizumi et al. 1993; Carrez et

al. 2009; Ritterbex et al. 2015), we consider a cut-off radius of 10% of the width

of a partial dislocation (ρ = 0.1ξn) in order to introduce the dependency of the

change in self energy of the partials on the choice of slip system. The choice of

ρ may therefore affect the absolute value of the critical nucleation enthalpy but

will not influence the relative difference with respect to different slip systems.

The formation of a kink-pair on one partial leads as well to a variation

in the Peierls energy dependent on the Peierls potential Vp (Eq. 1). The ap-

plied resolved shear stress τ will rigidly force the dislocation into a new quasi-

equilibrium position x0 within the crystal lattice :

∆Pp =

∫ x0+h

x0

Vpdx+
w

2
[Vp (x0 + h)− Vp (x0)] (3)
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The underlying assumption is that each equivalent partial dislocation has to

overcome half of the complete Peierls potential Vp (Eq. 1 of the main article).

The first part on the right hand side of Eq. 3 describes the energy associated with

kinks crossing the potential whereas the second term accounts for the energy

related to the position of the nucleated line segment w in the crystal.

Correlated kink-pair nucleation: low stress regime

End-member case in the low stress regime: τ → 0

Kink-pair nucleation in the end-member case τ → 0, relies on the nucleation

of two strictly identical rectangular kink-pairs on both partial dislocations. The

reason is that the work performed by the resolved shear stress is insufficient

to allow for the energy cost related to a change in the stacking fault. This

means that all kinks exhibit an equivalent height h and that both kink-pairs

consist of two kinks separated by an equivalent width w (Fig. S1a). The change

in (equilibrium) stacking fault width d associated with this type of kink-pair

nucleation is negligable as can be seen in Fig. S1a. The variation in enthalpy

∆Hc associated with correlated nucleation of two identical kink-pairs on both

partials has been derived analytically and is equal to:

∆Hc = ∆Eξ1 + ∆Eξ2 + ∆Eξ1,ξ2 + 2∆Pp + 2∆Wp (4)

where the change in elastic energy ∆Eξn of a screw partial ξn is given by:

∆Eξn(h,w) =
µb2p
2π

(√
w2 + h2 − w − h+ w log

2w

w +
√
w2 + h2

− 1

1− ν

(
w −

√
w2 + h2 + h log

h+
√
w2 + h2

w
− h log

h

eρ

))
(5)
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where µ is the shear modulus, ν is the Poisson ratio, bp is the modulus of the

partial Burgers vector and ρ is equal to a fixed cut-off radius reflecting a change

in absolute self energy of the partials as a consequence of the creation of the

edge kink segments. The height h of the kinks and the width w between a

pair of kinks describe the geometry of the kink-pair(s). The change in elastic

interaction ∆Eξ1,ξ2 between the partial dislocations is mainly due to the elastic

interaction between the kinks of both lines and has been derived as :

∆Eξ1,ξ2 = ∆Ek =
µb2p

2π (1− ν)
h log

d

d− h
(6)

where d is equal to the equilibrium stacking fault width. The plastic work

∆Wp performed by the resolved shear stress τ on one partial and the change

in Peierls energy ∆Pp due to kink-pair formation on a partial are given in the

main article. By solving ∂H/∂h=∂H/∂w=0, for a given stress τ , the critical

nucleation enthalphy ∆Hcrit
c as a function of the critical kink-pair geometry,

hcrit and wcrit, can be found as the saddle point configuration of the respective

total enthalpy variation ∆Hc. Generally, the height h of all kinks, in the end-

member case where τ → 0, is equal to the full period a′ of the Peierls potential.

Low stress regime: τ > 0

Kink-pair nucleation in the end-member case at low stress conditions is based

on the nucleation of two strictly identical kink-pairs on both partials. However,

the work done by the applied resolved shear stress in the low stress regime

can be sufficient to account for the energy variation related to small changes

in the stacking fault as in illustrated in Fig. 1b by correlated formation of two

geometrically different kink-pairs on both partials. Since we are still in the low

stress regime, the critical height is taken to be fixed as hcrit = a′ for τ → 0
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and the widths w1 and w2 between the kink-pairs on both partials 1 and 2

respectively are now taken to be the free geometrical variables (Fig. 1b). The

critical nucleation enthalpy ∆Hcc associated with this nucleation processes is

equal to:

∆Hcc = ∆Eξ1 + ∆Eξ2 + ∆Esξ1,ξ2 + 2∆Pp + 2∆Wp (7)

where ∆Esξ1,ξ2 = ∆Eξ1,ξ2 + ∆Ws. Here, ∆Ws is equal to two opposite contri-

butions: the change in stacking fault energy and the along going variation in

interaction energy between the partial line segments:

∆Ws =
µb2p
2π

(
−2a′ − 2

√
w2 + (d− a′)2 − w log

√
w2 + (d− a′)2 − w√
w2 + (d− a′)2 + w

+2
√
w2 + d2 + w log

√
w2 + d2 − w√
w2 + d2 + w

)
− 2γa′w (8)

where d is the equilibrium stacking fault width and w=1/2(w2 − w1) > 0. The

change in elastic interaction ∆Eξ1,ξ2 between the partial dislocations is mainly

due to the elastic interaction between the kinks of both lines and has been

derived as:

∆Eξ1,ξ2 =
µb2p

2π(1− ν)

(
2
√
w2 + d2 − d log

√
w2 + d2 + d√
w2 + d2 − d

−
√
w2 + (d+ a′)2 + 1/2(d+ a′) log

√
w2 + (d+ a′)2 + (d+ a′)√
w2 + (d+ a′)2 − (d+ a′)

−
√
w2 + (d− a′)2 + 1/2(d− a′) log

√
w2 + (d− a′)2 + (d− a′)√
w2 + (d− a′)2 − (d− a′)

)
(9)

In Eq.(7), ∆Eξn is defined as in Eq. (5).
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[100](010) screw dislocation

In case of the [100](010) screw dislocation, the critical nucleation enthalpies

calculated at low stress conditions using Eq. (7) are equal to the critical nu-

cleation enthalpies in the end member case at low stress using Eq. (4), on the

condition that ∆Ek=0 (Eq. 6). This implies that the use of linear elasticity over-

estimates the kink-kink interaction between the rectangular kink-pairs on both

partials in the end member case of the low stress regime, since small changes

in the stacking fault are able to reduce the kink-kink interactions. As a conse-

quence, the enthalpy variation associated with correlated kink-pair nucleation

on the [100](010) screw dislocations are finally taken to be equal to Eq. (4)

with ∆Eξ1,ξ2=Ek=0. This is generally the case for dissociated dislocations that

exhibit low to intermediate stacking fault widths (or high and intermediate

stacking fault energies) of approximately a′ ≤ d ≤ 3a′.

1/2〈111〉{101} screw dislocation

The situation is different in the case of the 1/2〈111〉{101} screw dislocation.

This is mainly due to the difference in ∆Ws (Eq. 7 and 8) between the [100](010)

and 1/2〈111〉{101} screws in case of small changes in the stacking fault at low

stress. For the [100](010) screw dislocation, the change in stacking fault energy

more or less compensates the along going variation in interaction energy between

the partial lines. For widely dissociated dislocations, where approximately d ≥

3a′, both terms have significant different weights: the change in stacking fault

energy becomes more important than the variation in elastic interaction energy

between the partials, despite the low stacking fault energies. This is due to the

fact that the variation in interaction energy between widely separated partial

lines is unsignificantly small. It means that stacking fault changes for widely

dissociated dislocations helps the nucleation process to occur by a decrease in

the critical activation enthalpy at low stress. Therefore, the enthalpy variation
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associated with correlated kink-pair nucleation on the 1/2〈111〉{101} screws are

finally taken to be equal to Eq. 7 in order to caption the aforementioned role

of the stacking fault.

Uncorrelated kink-pair nucleation: high stress regime

The alternative to glide of dissociated dislocations is the motion of the par-

tials as a result of uncorrelated kink-pair nucleation. These processes typically

govern kink-pair nucleation on dissociated dislocatons in the high stress regime

since this type of mechanism is characterized by an explicit change in the equi-

librium stacking fault width. The kink-pair model in this case relies on the

nucleation of a rectangular kink-pair of height h and width w on one partial

dislocation at the time. The variation in enthalpy ∆Hun
associated with one

unit step of uncorrelated kink-pair nucleation can be described as follows:

∆Hun
= ∆Eξn + ∆Eξ1,ξ2 + ∆Wsf + ∆Pp + ∆Wp (10)

where the variation in interaction energy ∆Eξ1,ξ2 between the partials is de-

scribed as the change in elastic interaction energy between both dislocation

lines as a consequence of the kink-pair formation on either the leading or the

trailing partial:

∆Eξ1,ξ2 =
µb2p
4π

±2h− 2
√
w2 + d2f − w log

√
w2 + d2f − w√
w2 + d2f + w

+ +2
√
w2 + d2i + w log

√
w2 + d2i − w√
w2 + d2i + w

)
(11)
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This expression is dependent on the precise mechanism of a unit step such that

di and df correspond to the initial and final stacking fault width between both

partial dislocations respectively during nucleation as shown in Fig. 1b and c of

the main article. ∆Wsf is equal to the change in stacking fault energy ±γhw

and balances as such the variation in elastic interaction energy ∆Eξ1,ξ2 .

Parametrization of the dislocation mobility

Dislocation mobilities can be described by the dislocation glide velocities

with respect to the different slip systems (Dorn and Rajnak 1964; Guyot and

Dorn 1967; Möller 1978). The velocity is a function of the stress dependent crit-

ical nucleation rate of kink-pairs. The latter depends on the critical nucleation

enthalphy ∆Hcrit and critical kink-pair geometry on the dislocation lines. The

dislocation velocity for τ ≤ τc is equal to

vc (τ, T ) = a′Jc
(
∆Hcrit

c

)
(12)

where the nucleation rate for correlated kink-pair formation Jc is given by

Jc = ν0
bp

wcrit (τ)

L

2bp
exp

(
−∆Hcrit

c (τ)

kbT

)
(13)

The dislocation velocity for τ ≥ τc is due to both correlated and uncorrelated

kink-pair nuleation and given by [Möller, 1978]:

vc+u (τ, T ) =
1

2
a′
[
Jc
(
∆Hcrit

c

)
+ Ju

(
∆Hcrit

u

)]
(14)
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where the nucleation rate for uncorrelated kink-pair formation Ju is given by

Ju = ν0
bp

wcrit (τ)

L

bp

(
τ − τc
τ

)
exp

(
−∆Hcrit

u (τ)

kbT

)
(15)

where the pre-exponential factor (τ − τc) /τ has been introduced to guarantee

the continuity between both velocity solutions vc and vc+u. It relies on the

assumption that the dislocation velocity vc+u at τ = τc has to be strictly equal

to that of vc.

The dislocation mobility depends as well on the evolution of the critical

kink-pair geometry (Eq. 12, 13, 14 and 15). Under low stress conditions, the

critical height hcrit of a kink is about equal to the Peierls periodicity a′ and

decreases with increasing stress. The critical width rapidly converges to finite

values with increasing stress but diverges when the resolved shear stress goes

to zero. Therefore, the critical kink-pair width needs to be truncated at low

stresses with respect to the typical average length L = 1/
√
ρm (where ρm is

equal to the dislocation density) of the partial dislocation lines. The value

wcrit for the [100](010) screw dislocations converges rapidly within 0.1τp to

a value of ∼ 8bp. The width wcrit for the 1/2〈111〉{101} screw dislocations

regarding uncorrelated nucleation converges within 0.2τp to a value of ∼ 10bp.

For correlated nucleation regarding kink-pairs exhibiting different widths, wcrit
1

and wcrit
2 converges within 0.02τp to ∼ 15bp and ∼ 5bp, respectively. Therefore,

independent of slip system and kink-pair nucleation mechanisms, small values

of wcrit are found to be converged at relatively low stresses. These small values

for wcrit (τ) are expected for slip systems with large Peierls stresses as discussed

by Philibert (1979).
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