The effect of phosphorus on manganocolumbite and mangaotantalite solubility in peralkaline to peraluminous granitic melts

YONG TANG^{1,2}, HUI ZHANG^{1,*}, AND BING RAO²

¹Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

²State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

ABSTRACT

Solubility experiments of Mn-columbite (MnNb₂O₆) and Mn-tantalite (MnTa₂O₆) were conducted under water-saturated conditions in synthetic haplogranitic melts containing different amounts of phosphorus at 800 °C and 100 MPa. All experiments were carried out in cold-seal rapid quenching pressure vessels (RQV) with water as a pressure medium. Experimental results show that: (1) the solubilities of MnNb₂O₆ and MnTa₂O₆ in peralkaline melts are higher than those in peraluminous melts; (2) phosphorus has strong influence on the solubilities of MnTa₂O₆ and MnNb₂O₆ in peralkaline melts, K_{Sp}^{Nb} and K_{Sp}^{Ta} decrease from 104.89 × 10⁻⁴ mol²/kg² and 107.62 × 10⁻⁴ mol²/kg² for melts without P₂O₅ to 16.11 × 10⁻⁴ mol²/kg² and 7.96 × 10⁻⁴ mol²/kg² for melts containing ~4.00 wt% P₂O₅, respectively; (3) phosphorus has less influence on the solubilities of MnTa₂O₆ and MnNb₂O₆ in peraluminous melt, K_{Sp}^{Nb} decrease from 4.50 × 10⁻⁴ mol²/kg² for melts without P₂O₅ to 0.73 × 10⁻⁴ mol²/kg², and K_{Sp}^{Ta} from 3.57 × 10⁻⁴ mol²/kg² to 0.14 × 10⁻⁴ mol²/kg² for melts containing ~5.00 wt% P₂O₅. Taking the structural role of phosphorus into account, P decreases the solubility of Mn-columbite and Mn-tantalite via competing for network modifiers.

Keywords: Columbite, tantalite, solubility, phosphorus, melt