
APPENDIX A: FITTING  METHODS FOR EMPIRICAL
ANNEALING  EQUATIONS

As discussed in the text, initial studies that modeled fis-
sion-track length annealing data used the least-likelihood for-
mulation provided by Box and Cox (1964), which was derived
under the assumption of constant variance after the transform
function g is applied. This assumption is inappropriate as a
general technique for fitting apatite annealing data, as is clearly
demonstrated by a reassessment of the fluorapatite data set of
Crowley et al. (1991). Figure A1 shows the relationship be-
tween f and g in their final fitted model. There is considerably
more scatter in points with low g values, which correspond to
experiments with r values near to 1. This is to be expected,
because at low levels of annealing a very wide range of times
and temperatures can only be differentiated by a narrow range
of r values (0.95-1.0) in which the experimental errors span a
large fraction of that range. As a result, there is an inescapable
lack of definition in this area of time-temperature space, and
the r  values contain relatively little information. Thus, even
though experimental r values near 1 tend to have the smallest
measurement errors in and of themselves, they provide the least
resolution of model parameters. Laslett and Galbraith (1996)
realized these shortcomings, and derived a customized log-like-
lihood approach that is well-suited for fission-track annealing
data.

In order to take errors into account explicitly, we used a χ2

merit function to describe the misfit between f and g:
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The error σ can then be estimated from the various experimen-
tal errors, which are combined using the standard equation for
error propagation (e.g., Bevington and Robinson, 1992, equa-
tion 3.14). If we take g(r ) as in equation (6), then the error due
to imprecision in the measurement of length is:
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where σr is the reduced standard error of the mean track length.
It is also possible to cast the function in terms of r instead of
g(r). Such an approach would have the advantage of being able
to include zero-length experiments among the data being fit-
ted. However, in this case numerical fitting techniques become
much more unstable, and require hard-wired intervention to
avoid computer errors from exponentiation of negative or very
large numbers. Additionally, the error of a zero-length experi-
ment is unknown or zero; either choice complicates incorpo-
rating the measurement errors of non-zero points in the analysis.

It is also appropriate to take into account errors in experi-
mental temperature determination, insofar as their magnitude
can be comparable to or exceed that of measurement errors.
The one-sigma temperature error estimated by Carlson et al.
(1999, this volume) is 1 °C. The magnitude of the estimated
uncertainty in fission-track length can be observed by looking
at a sequence of experiments for RN apatite at 100 hours (Table
A1). At low levels of annealing, the natural spread in fission-
track lengths is far larger than the estimated effect of a 1 °C
variation in annealing conditions. However, at higher levels of
annealing the errors become comparable. At the highest levels
of annealing the errors remain comparable for mean length,
while for modeled c-axis projected lengths, which have had
most of the effects of length anisotropy removed, the estimated
error due to temperature predominates.

Errors in experiment duration may also be applicable in some
cases. We estimated the 1-sigma error in experiment duration
to be 150 s. This primarily represents the uncertainty in the
time required for the furnace to regain its original temperature
after the apatite sample was introduced. In general, it took from
120 to 300 s after adding the sample before the temperature
had come to within 2 °C of its intended value, after which we
considered it to be “on temperature”. After this point it gener-
ally took an additional 120 to 600 s for the final temperature to
be reached. This error is small in even 1 hour runs, but if shorter
runs are used (e.g., 20 min in Green et al. 1986) the uncertainty
may become a significant factor.

Because of the acceleration of annealing, both temperature
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APPENDIX FIGURE 1. Relation between f(t,T) and g(l) as modeled
by Crowley et al. (1991). The Box and Cox (1964) log-likelihood
function used to fit the data assumes that after the transform function
g(l) is applied, error variance is constant. In fact, there is a higher
degree of error in the experiments with long track lengths, as relatively
large intervals in experimental temperature produce small changes in
track length. As a result, use of the Box and Cox (1964) function for
fitting fission-track data is inadvisable.

APPENDIX TABLE 1. Uncertainty in length measurement vs. effect
of uncertainty in temperature conditions, apatite RN,
annealing time 100 hours

mean lengths c-axis-projected lengths
T lm σmeas σT lc,mod σmeas σT

(°C) (µm) (µm) (µm) (µm) (µm) (µm)
101 15.89 0.07 0.005 16.30 0.05 0.003
150 15.62 0.07 0.01 16.11 0.04 0.008
202 14.76 0.07 0.03 15.55 0.04 0.02
250 12.11 0.09 0.09 13.69 0.04 0.05
275 8.71 0.26 0.27 11.96 0.05 0.09
T = Experiment temperature. σmeas = Estimated measurement error. σT =
Estimated effect on length measurement of a 1 °C temperature variation.



and time excursions have an inversely proportional relation-
ship to measured mean or c-axis projected length: the shorter
the length, the larger the effect of a given temperature or time
excursion. The between-experiment variance component used
by Laslett and Galbraith (1996, Eq. 8), which they found to be
adequately approximated as being independent of the mean,
does not agree with this observation.

To incorporate errors in time and temperature determina-
tion, the estimated errors must be multiplied by the appropri-
ate derivative of the function f(t,T). For example, errors in
temperature determination for a fanning curvilinear model
(Equation (4)) are included using the factor:
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whereσT
 is the standard deviation that describes the uncer-

tainty in the temperature determination, t and T are the dura-
tion and temperature of the isothermal annealing experiment,
and C1, C2 and C3 are the parameters that are being fitted.

In order to help maintain stability in the numerical solver,
the fanning curvilinear model was reparameterized using a
method analogous to that described by Laslett and Galbraith
(1996, Equation 12). Instead of solving directly for C2 and C3,
which are far outside the vicinity of the data, we used the sub-
stitute parameters:

b
C

C1
2

3

12 794
6 2918

= −
− −

.
.

, (A4a)

b
C

C2
2

3

12 794
6 0334

= −
− −

.
. (A4b)

which correspond to the contour line slopes at 100 hours and
267 °C and 144 °C, respectively.

In this paper we report reduced χ2 values (χυ
2), which are

equal to χ2 divided by the degrees of freedom. The expectation
for an appropriate model with well-estimated errors is a χυ

2

value of 1. However, this value is seldom achieved in the work
presented here. There are a number of reasons for this failure.
First, there are undoubtedly sources of error that are not taken
into account, including possible errors in etching and undetec-
ted systematic errors. The fact that fits of annealing models of
c-axis projected data produce χυ

2 values that are larger than
those using mean-length data suggests that the c-axis-projec-
tion model may have an associated error that we were not able
to detect and quantify. In multiple-apatite fits, the asymmetric
nature of errors in the parameters rmr0 and κ make their inclu-
sion in a χ2-minimization scheme problematic, although they
are certainly non-negligible. Similarly, accounted-for errors,
such as uncertainty in temperature determinations, may be in-
correctly approximated. Second, there may be aspects of the
physical processes underlying the data that the empirical mod-
els employed are incapable of reproducing, introducing fur-
ther errors. Laslett and Galbraith (1996) correctly point out that,
as currently measured, unannealed initial spontaneous track
lengths are not the correct normalizing quantity (although, as
discussed in the text, the correct normalizing value is unknown,
and their proposed solution is also subject to argument).

While we view the shortcomings listed above as areas with
potential for improvement, we do not consider them debilitat-
ing. The primary goal of error propagation in this study was to
determine the appropriate weighting for each experiment when
finding best-fit parameters, not to provide a complete account-
ing of the errors.

Because of the apparent effect that Cf-irradiation has on
mean lengths, particularly in highly annealed experiments, we
did not use any analyses that employed that technique when
fitting mean-length models. The primary way that Cf-irradia-
tion affects mean length measurements is apparently to alter
the relative frequency of observation of different angular popu-
lations. Cf-irradiation effects on modeled c-axis projected
lengths are thus much smaller, as the influence of anisotropy is
removed. We thus included these experiments in fitting mod-
eled c-axis projected lengths.

In some cases there were apatites for which the measured
mean or c-axis projected length of an annealed experiment were
slightly longer than for the “unannealed” determination (run 0).
In these cases, the longest measurement was used as the nor-
malizing factor, rather than the run 0 measurement.

Two different variations of the simplex method were used
to find the best-fitting models. The downhill simplex method
described by Press et al. (1988) was used for fitting apatite-
apatite pairs and for finding close-fitting models for Monte
Carlo estimation of errors. To ensure that the solution found
could not be improved, the algorithm was re-executed using
the previous solution as one of the points; convergence was not
accepted until the routine was called four times without an im-
provement in the solution. An implementation of the controlled
random search algorithm (Willett 1997) was provided to R.
Donelick by S. Willett (personal communication) and re-coded
and adapted by R. Ketcham to fit the annealing models in this
paper. Convergence was accepted when all of the models had
χ2 values that were within a factor of 10-8 of each other (i.e.,
when the difference between them is less than one 100-mil-
lionth of their magnitude). Bounds on all variables being fitted
(Table A2) were set intentionally wide to ensure that the solu-
tion space could be traversed freely by the fitting algorithms.
Both methods yielded identical solutions when the parameter
space was more tightly bounded, but the looser constraints on
the annealing equations necessitated the use of the controlled
random search algorithm. Monte Carlo error estimates used
the fitted models as initial guesses, which in turn permitted the
use of the faster downhill simplex method for calculation.

Errors on all fitted parameters were estimated using a Monte
Carlo method. For each solution, 1000 “nearby” solutions were
calculated by varying each data point by a Gaussian factor of
the standard error of the measurement and the estimated stan-

Table A2 . Bounding values used for model fitting

Fanning Linear Fanning Curvilinear
Variable upper lower upper lower

C0 20.0 -50.0 0.0 -3000.0
C1 0.01 0.0 60.0 0.0
C2 0.0 -50.0 60.0 30.0
C3 0.002 0.0 60.0 30.0
α 1.0 -1.0 1.0 -1.0
β 10.0 -35.0 5.0 -25.0



dard error of the temperature determination. The reported er-
ror bounds contain 95% of all such solutions. For the anneal-
ing models used here, the parameters α and β are tightly linked
to C0 and C1, such that variations in one pair often can be com-
pensated for very closely by variations in the other. Conse-
quently, when all of them were allowed to vary in the Monte
Carlo models the result was error bounds that were so large as
to be uninformative, often larger than the magnitude of the pa-
rameters themselves. We thus opted to follow the convention
used by Crowley et al. (1991) and hold α and β constant at the
values obtained in the original solution. Even with this mea-
sure, the reported errors are not independent of each other, as
changes in some parameters can be compensated by changes
in others (e.g., Laslett and Galbraith 1996).

RESULTS

The result of using a χ2 fit of the F-apatite data of Crowley
et al. (1991) is illustrated in Tables 1 and 2. Predicted index
temperatures are substantially lower, because greater empha-
sis is placed on fitting the more highly annealed points, rather
than the relatively unannealed points that represent the major-
ity of the data.

It should be noted that the choice of merit function does not
have as large an effect on analysis of the Durango apatite data
of Green et al. (1986), probably because that data set is much
more balanced in terms of the relative amounts of annealing
among the experiments. For example, the Green et al. (1986)
data set has 4% of its experiments with reduced lengths of
>0.975, and 13% with >0.95, whereas the Crowley et al. (1991)
data set has 11% with >0.975 and 31% with >0.95. This over-
abundance of experiments with very low levels of annealing,
brought about because of the choice to use regular temperature
intervals in the experiments, makes the Crowley et al. (1991)
data set more susceptible to problems caused by overweighting
of these points. The data set presented by Carlson et al. (1999,
this volume) was also constructed based on constant tempera-
ture intervals.

The statistical approach used here differs conceptually in a
number of ways from the method of Laslett and Galbraith
(1996). First, it uses measured length errors on an experiment-
by-experiment basis, whereas the Laslett and Galbraith (1996)
analysis used a single fitted function to characterize the aver-
age length error as a function of length. Second, their treat-
ment takes length measurements of zero into account through
the introduction of a probability function that predicts a dimin-
ishing probability of seeing tracks in an experiment at high
levels of annealing, even when tracks may in fact be present.
This is an interesting concept, but it appears to assign a con-
stant value to what may be an operator-specific quantity: how
thoroughly does the investigator search for tracks in highly
annealed experiments? This probability is also certainly affected
by Cf-irradiation, as employed in many cases in this study,
which helps to reveal highly shortened tracks. In the approach
used here, experiments that produce total annealing can instead
be used as a check for the fits based on non-zero data; if the fits
predict non-zero track lengths where only zero lengths are ob-
served, it may indicate an error, whereas if there is no contra-

diction, the veracity of the model is supported and no informa-
tion is lost.

Fitting multi-apatite models

Fits that included multiple types of simultaneously annealed
apatites utilized the above procedures and assumed constant
values of rmr0 and κ. We note that there are two shortcomings to
this approach. First, uncertainties in rmr0 and κ for many of the
apatites studied represent potentially substantial components
of error. As a result the uncertainty in the index temperatures
of some apatites (primarily the highest-resistance ones) are
underreported. Exclusion of these error terms is probably also
partly responsible for inflated χυ

2 values. Second, proper cal-
culation of χυ

2 should distinguish between errors that affect all
apatites in a single annealing run identically, such as tempera-
ture excursions, and those that affect each apatite separately,
such as measurement uncertainty. Separation of components
of error is complicated by the circumstance that different ex-
perimental errors will have different effects on measured mean
lengths. For example, a given temperature excursion will cause
a different change in annealing for each apatite being studied.
While more rigorous statistical treatments that overcome these
difficulties would be preferable, the level of agreement between
the single-apatite models and the multiple-apatite ones sug-
gests that the inaccuracies introduced are minor.

Residuals

Standardized residuals for two multiple-apatite models are
shown in Figure A2. Standardized residuals are calculated here
using the equation:

r ri

meas T
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where ri is a reduced length measurement, r i
 is the reduced

length predicted by the model, σmeas is the standard error of the
length measurement, and σT is the length error caused by un-
certainty in the temperature determination. The left column
shows residuals for the fanning linear model of mean rack
lengths, and the right column shows residuals for the fanning
curvilinear model of c-axis projected track lengths.

The upper graph in each column shows the distribution of
standardized residuals; each appears to be a rough but non-
ideal normal distribution. The subsequent graphs show the
change in residuals as a function of temperature for the various
annealing intervals. The primary obvious trend is that the low-
temperature residuals for many of the classes appear preferen-
tially positive. This apparent bias is primarily caused by the
maximum r value being 1.0, and the normalizing values being
close to many of the other measurements from low-tempera-
ture annealing runs. Because the models cannot predict r val-
ues above 1.0, substantial divergences must have positive
residuals. If the lower two temperatures from each time inter-
val are disregarded, there appears to be little structure in the
remaining residuals.
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APPENDIX FIGURE 2. Standardized residuals for multiple apatite models: the fanning linear fit of mean lengths in the left column, and the
fanning curvilinear fit of c-axis-projected lengths in the right column. Top-most graphs show histograms of overall distribution of residuals,
while lower graphs show residuals vs. temperature for various annealing times.



APPENDIX B: APATITE -APATITE  FITTING

The most robust way of fitting Equation 8 to a set of paired
apatite experiments in which one is less resistant to annealing
than the other is to minimize a straightforward χ2 formulation:
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where r lr,i  and rmr,i are the reduced lengths of the less-resistant
and more-resistant apatite, respectively, for a single experiment
i. The standard deviation can be estimated from the individual
length measurements:
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Because all apatites have undergone exactly the same high-
temperature annealing history, there is no need for error terms
to account for uncertainties in experimental conditions.

When a suite of more than two apatites is being studied, it
is more general to assume that neither apatite in a random pair
is necessarily the most resistant one for the entire system. In
this case, any two apatites can be compared by mapping each
one back to the most resistant apatite:
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where ̂rmr i,1,  is the estimated reduced length of the most resis-
tant apatite for the conditions in experiment i based on the re-
duced length of the first apatite:
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where r1,i is the reduced length of the first apatite in experiment
i, and rmr0,1 and κ1 are the equation (8) parameters for the first
apatite. The estimate based on the second apatite is analogous.
The error term is then:
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For the most resistant apatite in the suite, r mr0 and k are held
constant at 0 and 1, respectively. Because of the inverse expo-
nent, this method is less stable for k values near 0, which can
be encountered during the fitting process; however, in practice
the minimum κ value observed has always been >0.1, permit-
ting us the reasonable step of restricting k values to be >0.05.

This formulation has the advantage of allowing any two
apatites from a suite to be evaluated against each other. Thus,
to find the most internally consistent set of rmr0-κ parameters to
characterize a suite, χ2 is calculated by comparing each apatite
to each other apatite:
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≠
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This method also makes it possible to use experimental runs
that do not encompass the entire suite of apatites, as long as
each apatite can be linked to the others through some common
experiments. For example, in the Carlson et al. (1999, this vol-
ume) data set, all experiments for all 15 apatites can be used
for a fit of this type because of the 11 experiments they all had
in common, even though four apatites had up to 60 more ex-
periments than the others. Fitting the entire suite of 408 ex-
periments with what amounts to an equation with 28 parameters
is a computationally challenging task. In addition to the fitting
methods described in Appendix A, we also employed Powell’s
method as implemented in Press et al. (1988), with minor modi-
fications. Monte Carlo estimation of parameter errors used only
100 simulations because of the computational time required.

Paired apatite relations were also examined to see if they
are able to provide an improved estimate of the initial track
length. This was done using the equation:
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where δlr and δmr are correction factors for the reduced length
that are allowed to vary in the range 0.7–1.0, in effect permit-
ting the initial track length for each apatite to be revised up-
ward by up to 30%, or to about 21.5 µm. Table B1 shows the
results obtained from fitting both mean and modeled c-axis
projected lengths using a simultaneous solution. Whereas al-
lowing the initial length to vary evidently results in a statisti-
cally better fit to the data, the fact that the range of implied
adjustments to the initial length (4–14%) far exceeds that seen
in the experimental data collected thus far leads us to conclude
that this approach is not advisable.
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TABLE B1. Results of fitting rmr0-κ parameters while allowing initial
  track length to vary

lm (χu
2 = 1.89) lc,mod (χu

2 = 2.28)
apatite rmr0 κ δ rmr0 κ δ
AY 0.6889 0.3218 0.9026 0.7158 0.1830 0.8838
B2 0.0000 1.0000 0.9269 0.0000 1.0000 0.8682
B3 0.4444 0.6524 0.9064 0.6754 0.2186 0.8959
DR 0.7041 0.2732 0.9137 0.7208 0.1615 0.8969
FC 0.5938 0.3888 0.9219 0.6903 0.1725 0.9111
HS 0.7435 0.3391 0.8673 0.7461 0.1990 0.8649
KP 0.5832 0.3614 0.9323 0.6932 0.1529 0.9213
OL 0.7219 0.3128 0.9001 0.7287 0.1885 0.8788
PC 0.5930 0.2729 0.9622 0.6661 0.1538 0.9369
PQ 0.7036 0.3832 0.8733 0.7199 0.2017 0.8719
RN 0.7434 0.2622 0.9057 0.7357 0.1785 0.8780
SC 0.7402 0.2754 0.8946 0.7299 0.1903 0.8714
TI 0.4308 0.5535 0.9337 0.6482 0.2008 0.9197
UN 0.7149 0.3405 0.8879 0.7266 0.1915 0.8765
WK 0.7177 0.3244 0.8878 0.7275 0.1852 0.8764


