APPENDIX: FISSION-TRACK LENGTH C-AXIS PROJECTION SOURCE CODE

FORTRAN source code is provided below that implements the fission-track length *c*-axis projection model presented in this paper. Appendix Table 1 lists the contents of an input data file named *testl.dat* and the corresponding output data file named *testlc.dat*.

The model presented in this paper permits any fission-track length l_i oriented at θ_i degrees to the crystallographic *c* axis in apatite to be converted to an equivalent track length parallel to the crystallographic *c* axis, $l_{c,i}$, based on the results of annealing experiments for six different apatites (five calcian fluorapatites and Durango apatite). An iterative process of calculation is required to obtain values of $l_{c,i}$ according to the following steps:

Step 1

Using Equation 1, the value of l_c is determined iteratively by varying l_c until the following expression holds within some pre-defined level of tolerance:

$$l_{i} = 1/\{\operatorname{sqrt}[(\sin\theta_{i}/l_{a})^{2} + (\cos\theta_{i}/l_{c})^{2}]\}$$
(A1)

Step 2

(a) For $l_c \ge 12.96 \,\mu\text{m}$, the fission track is an elliptical-model fission track and the value of l_c obtained using Appendix Equation 1 is accepted as $l_{c.i.}$ (b) However, for $l_c < 12.96 \,\mu\text{m}$, fission-track populations exhibit accelerated length reduction at relatively high angles to the crystallographic c axis. These populations are characterized by a progressive collapse of the fitted ellipses from relatively high angles to the c axis near $l_c \approx 12$ μ m to increasingly low angles to the *c* axis as l_c approaches 9.31 μ m, the approximate minimum l_c value to be expected before a fission-track population completely anneals and becomes unetchable. For collapsed ellipses, two equations define the mean fission-track length as a function of track angle to the crystallographic c axis; at relatively low angles to the c axis, fission-track lengths remain distributed about a partial ellipse; at relatively high angles to the c axis, fission-track lengths are shortened sufficiently so that they plot below the ellipse on average. A parameter defined as the acceleratedlength-reduction angle, θ_{alr} , is defined corresponding to the orientation relative to the c axis that divides these two fission-track length behaviors. The parameter θ_{alr} is correlated with l_c according to Equation 2. For $\theta_i \leq \theta_{alr}$, the fission track is an elliptical-model fission track and the value of l_c obtained iteratively using Appendix Equation 1 is accepted as $l_{c,i}$. (c) For $\theta_i > \theta_{alr}$, most fission tracks are accelerated-length-reduction fission tracks and the mean fission-track length is modeled as a line between two specific points. The first point, $(c_1 = 0, a_1)$, is the *c*-axis perpendicular intercept of the line passing through the accelerated-length-reduction fission tracks. The parameter a_1 is correlated with θ_{alr} according to Equation 3. The second point, (c_2, a_2) , corresponds to the point at the angle θ_{alr} to the crystallographic c axis on the ellipse passing through the accompanying elliptical model fission tracks. Using Appendix Equation 1, the Cartesian coordinates of this point are given by

$$c_{2} = \cos\theta_{alr} / \{ \operatorname{sqrt}[(\sin\theta_{alr}/l_{a})^{2} + (\cos\theta_{alr}/l_{c})^{2}] \}$$

$$a_{2} = \sin\theta_{alr} / \{ \operatorname{sqrt}[(\sin\theta_{alr}/l_{a})^{2} + (\cos\theta_{alr}/l_{c})^{2}] \}$$

The value of
$$l_c$$
 is determined iteratively by varying l_c until the following expression holds within some pre-defined level of tolerance.

 $l_{i} = \operatorname{sqrt}\{(l_{i}\cos\theta_{i})^{2} + [l_{i}\cos\theta_{i}(a_{2}-a_{1})/(c_{2}-c_{1}) + a_{1}]^{2}\}$ (A2)

For an accelerated-length-reduction fission track, the value of l_c obtained using Appendix Equation 2 is accepted as $l_{c,i}$.

Step 3

This step in program *lcproj* is used to assign the minimum possible l_c value to a fission-track length that is too short at its respective crystallographic orientation to fall within the valid model space. The value used for this parameter in *lcproj* is 7.31 µm representing 9.31 µm minus 2.00 µm; the former is the minimum l_c observed for the six selected apatites and the latter is equal to ~2 units of $\sigma_{c,mod}$. The last fission track listed in both the input and output data files in Table A1 is an example of such a fission track.

Step 4

This step in program *lcproj* is used to test for convergence of the iterative solution being implemented and to update boundary values of l_c to facilitate convergence after each iteration for which convergence has yet to be achieved.

```
program lcproj
    dimension
    xl(2000), xthet(2000), xkin(2000), xlc(2000)
c reads 3 column length file (length,
angle to c-axis in degrees,
c kinetic parameter), projects the
lengths onto the c-axis, writes
c projected lengths to a new 3 column
length file
    call readl(n,xl,xthet,xkin)
    call projlc(n,xl,xthet,xlc)
    call writelc(n,xlc,xkin)
    stop
    end
С
    subroutine readl(n,xl,xthet,xkin)
    dimension
    x1(2000), xthet(2000), xkin(2000)
c reads 3 column length file and con-
verts angles from degrees to
c radians
    pi=3.1415927
    n=0
    open(1,file=' ')
5 n=n+1
      read(1,' (3f15.7)', end=10)xl(n), xthet(n), xkin(n)
     xthet(n)=xthet(n)*(pi/180.)
     goto 5
10
    close(1)
    n=n-1
    return
    end
C
    subroutine projlc(n,xl,xthet,xlc)
    dimension
    x1(2000), xthet(2000), x1c(2000)
c projects lengths onto the c-axis with
```

a tolerance given by c parameter tol pi=3.1415927 c parameters for Equation 1 eq11=1.632 eq12=-10.879 c parameters for Equation 2 eq21=0.304 eq22=0.439 c parameters for Equation 3 eq31=0.1035 eq32=-2.25 c lc value below which evidence of accelerated length reduction c exists xlccut=12.96 c minimum lc value possible minus approximately 2 standard deviations x1c0=9.31-2.*1. c tolerance level tol=0.001 do 10 i=1, n c step 1: calculate c-axis parallel length lci value for measured c values of li, thetai xlcmin=xl(i) xlcmax=20. 5 xlc(i) = (xlcmax+xlcmin) /2. xla=eq11*xlc(i)+eq12 xltry=ell(xla, xlc(i), xthet(i)) c step 2a: test if on full ellipse or on collapsed part of c ellipse using cutoff given by parameter xlccut if (xlc(i).lt.xlccut) then c step 2b: if on collapsed ellipse then calculate accelerated c length reduction angle xthetalr for current lci and convert to c radians; test if xtheti is greater than xthetalr for current lci xthetalr=eq21*exp(eq22*xlc(i))*(pi/ 180.) if (xthet(i).gt.xthetalr) then c step 2c: for xtheti greater than xthetalr calculate parameters c for linear collapsed part of ellipse with lci c1=0.0 a1=eq31* xthetalr* (180./pi)+eq32 $c_{2}=$ ell(xla,xlc(i),xthetalr)*cos(xthetalr) a2= ell(xla,xlc(i),xthetalr)*sin(xthetalr) xseg=xl(i)*cos(xthet(i)) yseg=((a2-a1)/(c2-c1))*xseg+a1c equation (A.2) xltry=sqrt(xseg**2+yseg**2) endif endif

```
c step 3: if a length is too short for
the model then the model
c projects this length to the minimum lci
value possible where la
c equals 0.
    if (xlcmax-tol.le.xlc0)) then
     xlc(i)=xlc0
     goto 10
c step 4: test for convergence and adjust
minimum or maximum value
     else if (xltry.gt.(xl(i)+tol)) then
      xlcmax=xlc(i)
      goto 5
     else if (xltry.lt.(xl(i)-tol)) then
      xlcmin=xlc(i)
      goto 5
     endif
10 continue
    return
    end
C
    function ell(xla,xlc,xthet)
c equation (A.1)
    ell=(sin(xthet)/xla)**2+(cos(xthet)/
    xlc)**2
    ell=1./(sqrt(ell))
    return
    end
С
    subroutine writelc(n,xlc,xkin)
    dimension xlc(2000), xkin(2000)
c writes 3 column length file and with
the orientation angles set
     to zero
С
     xthet=0.
     open(2,file=' ')
     do 10, i=1,n
      write
      (2,' (3f15.7)')xlc(i), xthet, xkin(i)
10
     continue
     close(2)
     return
     end
```

Appendix Table 1. Example input and output data files for

program toproj					
testl.dat (input)			testlc.dat (output)		
xl(i)	xthet	xkin(i)	xlc(i)	xthet	xkin(i)
(µm)	(degrees)	(µm)	(µm)	(degrees) (µm)	
16.00	87	1.50	16.47	0	1.50
16.00	3	1.51	16.00	0	1.51
13.00	87	1.52	14.63	0	1.52
13.00	3	1.53	13.01	0	1.53
12.80	87	1.54	14.51	0	1.54
12.80	45	1.55	13.95	0	1.55
12.80	10	1.56	12.92	0	1.56
8.00	87	1.57	12.82	0	1.57
8.00	45	1.58	11.30	0	1.58
8.00	10	1.59	8.69	0	1.59
3.00	87	1.60	11.61	0	1.60
3.00	45	1.61	10.63	0	1.61
9.80	10	1.62	10.12	0	1.62
1.00	10	1.63	7.31	0	1.63