American Mineralogist, Volume 82, pages 657-662, 1997

All-atom ab initio energy minimization of the kaolinite crystal structure J. David Hobbs,¹ Randall T. Cygan,² Kathryn L. Nagy,² Peter A. Schultz,¹ and Mark P. Sears¹

¹Computational Material Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-1111, U.S.A. ²Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-1111, U.S.A.

Abstract

Calculations that minimize the energy and optimize the geometry of all atomic coordinates for two proposed kaolinite crystal structures were performed using a first-principles, quantum chemical code based on local density functional theory. All calculations were performed using published unit-cell parameters. Inner- and interlayer H atom positions agree well with those determined by Bish (1993) from neutron diffraction data and confirm a unit cell with C1 symmetry.