Single-crystal compression and crystal structure of clinopyroxene up to 10 GPa

LI ZHANG, HANS AHSBAHS, STEFAN S. HAFNER, AND ALI KUTOGLU

Scientific Center of Materials Sciences and Institute of Mineralogy, University of Marburg, 35032 Marburg, Germany

ABSTRACT

The hydrostatic compression of synthetic single crystals of diopside, $\operatorname{CaMgSi}_2O_6$, and hedenbergite, $\operatorname{CaFeSi}_2O_6$, was studied at 33 pressures up to 10 GPa by X-ray diffraction. In addition, intensity data for hedenbergite were collected at 12 pressures up to 10 GPa. For determination of the elasticity two crystals were loaded together in a diamond cell. The axial compressibilities β_a , β_b , and β_c of diopside and hedenbergite are 2.36(4), 3.17(4), and 2.50(4) \times 10⁻³ GPa⁻¹, and 1.93(5), 3.38(6), and 2.42(8) \times 10⁻³ GPa⁻¹, respectively. The bulk moduli (K_{T_0}) and their pressure derivatives (K'_{T_0}) were determined simultaneously from a weighted linear fit of a third order Birch-Murnaghan equation of state to the volume data at elevated pressures. K_{T_0} and K'_{T_0} are 104.1(9) GPa and 6.2(3) for diopside and 117(1) GPa and 4.3(4) for hedenbergite, respectively.

The unit-cell parameters decrease continuously with pressure. The larger polyhedra show more compression than the smaller ones. Between 0.1 MPa and 10 GPa the polyhedral volumes of CaO₈, FeO₆, and SiO₄ decrease by 8.4, 6.6, and 2.9%, respectively. The longest bonds of CaO₈ and FeO₆ show most compression. Significant compression in the two shortest Si-O1 and Si-O2 bond lengths of the SiO₄ tetrahedra was observed at relatively low pressures, resulting in a tetrahedral volume compression of 1.6% between 0.1 GPa and 4 GPa and 1.3% between 4 and 10 GPa. The compression of the unit cell can be described by the volume compression of the individual CaO₈ and FeO₆ polyhedra, with the SiO₄ tetrahedron playing a minor role. Diopside is more compressible than hedenbergite as shown by their axial and volume compressibilities because the FeO₆ octahedron is significantly more rigid than MgO₆ at high pressures. This observation implies that octahedrally coordinated Fe²⁺ behaves differently from Mg at high pressures, in contrast to their behavior at ambient conditions.