The influence of water on the structure of hydrous sodium tetrasilicate glasses

NIKOLAY ZOTOV1,2,* AND HANS KEPPLER1

1Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth 95440, Germany
2Central Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Rakovski str. 92, Sofia 1000, Bulgaria

ABSTRACT

The structure of sodium tetrasilicate (Na2Si4O9) glasses containing 0 to 10 wt% water was investigated by a combination of Raman, IR, and NMR methods. Both the 29Si magic angle spinning NMR data and Raman spectra in the Si-O stretching region clearly show that water depolymerizes the silicate network of the glasses. Q-species distributions calculated from Raman spectra, assuming equal scattering cross sections of all bands in the Si-O stretching region, closely agree with results obtained from NMR data. At low total water contents, the silicate network is depolymerized mainly by breaking of Q4-Q4 bonds, whereas breaking of Q3-Q3 bonds dominates at high water contents. Near IR spectra show the presence of both OH groups and molecular H2O in the glasses. The number of non-bridging O atoms per silicon atom, calculated from the near IR data, closely agrees with the results obtained from Raman and NMR, and confirms the assignment of the 4500 cm⁻¹ band in the near IR to a combination mode of Si-OH groups. Moreover, the intensity of the fundamental Si-OH stretching band at 910 cm⁻¹ in the Raman spectra varies proportionally to the intensity of the 4500 cm⁻¹ near IR band. Both IR and Raman spectra show three main bands in the OH-stretching region, centered at 3580, 3000, and 2350 cm⁻¹, due to hydrous species with different hydrogen bond strengths. The relative intensities of these three bands are insensitive to total water content and OH/H2O ratio, suggesting that both OH and H2O contribute to each of these bands. This is consistent with the fine structure of the H2O bending vibration in the IR spectra around 1640 cm⁻¹ and with the polarization dependence of the OH-stretching bands in the Raman spectra. Near IR spectra of hydrous sodium tetrasilicate glasses and hydrous aluminosilicate glasses are very similar and show a similar dependence of band intensity on total water content, suggesting that there is no fundamental difference in the dissolution mechanism of water in these systems.

INTRODUCTION

Water is the most important volatile component in natural magmas. Accordingly, considerable effort has been expanded over several decades to understand the dissolution mechanism of water in silicate melts (McMillan 1994). In-situ spectroscopic measurements of hydrous silicate melts at high temperature and high pressure have only recently become feasible and are essentially still limited to near IR and Raman techniques (e.g., Keppler and Bagdassarov 1993; Nowak and Behrens 1995; Shen and Keppler 1995; Holtz et al. 1996). These measurements show that the structure of hydrous melt and quenched glass at room temperature are qualitatively similar. However, quantitative data on melt structure cannot be obtained from quenched samples, because speciation in hydrous glasses changes even below the glass transformation temperature (Nowak and Behrens 1995; Shen and Keppler 1995). Nevertheless, studies of hydrous glasses still provide a valuable first step toward understanding the dissolution of water in silicate melts. In particular, various spectroscopic and diffraction methods can be used simultaneously on glasses and the results can be cross-checked in order to establish proper procedures for the quantitative evaluation of spectroscopic data. Proper band assignments and structural models can then be used to study the structure of hydrous silicate melts directly at high pressure and high temperature.

Presently, even the structure and vibrational spectra of relatively simple hydrous silicate glasses are not sufficiently understood (McMillan 1994). Whereas a general consensus exists that both molecular H2O and OH groups are present in hydrous glasses (Batholomew et al. 1980; Stolper 1982), different estimates of the OH/H2O ratio are sometimes obtained from IR, Raman, and NMR data (Farnan et al. 1987; Eckert et al. 1987). Moreover, the structural role of OH in hydrous aluminosilicate glasses is still debated. Whereas some models invoke the formation of Si-OH or Al-OH groups, implying depolymerization of the glass structure by water (Burnham 1979; Sykes and Kubicki 1993), other models imply that water has no effect on the degree of polymerization (Kohn et al. 1989). Some of these discrepancies are related to disparate as-
signments of various bands in the near IR and Raman spectra of hydrous glasses (McMillan 1994). Also, the spatial relationship between OH and H$_2$O and the extent of hydrogen bonding for these species is poorly understood (e.g., Schaller and Sebald 1995).

The existing controversies appear to result from use of only one or two spectroscopic methods to investigate a system and to establish a structural model. Combining a wide variety of spectroscopic and diffraction methods will help to establish a coherent structural model of a simple binary hydrous alkalisilicate glass. This study combines previous results from neutron diffraction (Zotov et al. 1996), various NMR methods (Kümmelen et al. 1992; Schaller and Sebald 1995), reverse Monte Carlo simulations (Zotov and Keppler 1998), with new Raman, IR, and 29Si MAS NMR data to cross-check various spectroscopic methods and to establish proper band assignments in vibrational spectra. The system sodium tetrasilicate (Na$_2$Si$_4$O$_9$)-H$_2$O was examined because highly resolved 29Si NMR spectra can be obtained (Kümmelen et al. 1992), and the compositional simplicity facilitates peak assignments in vibrational spectra as well as in the radial distribution functions obtained from neutron diffraction (Zotov et al. 1996).

EXPERIMENTAL METHODS

Anhydrous sodium tetrasilicate (Na$_2$Si$_4$O$_9$) glass was prepared by melting homogenized mixtures of stoichiometric quantities of SiO$_2$ (analytical grade Merck) and Na$_2$CO$_3$ (analytical grade Merck) in a platinum crucible at 1200 °C for about 20 h and quenching the crucible in water. The final composition (20.5 mol% Na$_2$O, 79.5 mol% SiO$_2$) was measured by ICP-AES (inductively coupled plasma atomic emission spectrometry). Protonated and deuterated glasses were synthesized in a rapid-quench TZM-autoclave. For each experiment, appropriate amounts of anhydrous glass and deuterium oxide (99.8% D$_2$O, Heraeus) or doubly distilled water were loaded in platinum capsules (5 mm diameter, 3.5 cm length, 0.15 mm wall thickness) and hermetically sealed by arc-welding. The capsules were first compressed at 1 kbar and 2 kbar, without significant change in weight, were used in the procedure. The weight of the capsules before and after this procedure was compared to detect any leaks. Only capsules with 1 cm$^{-1}$ resolution, and 100 scans per sample. All IR measurements were carried out using a Bruker IFS 120 HR Fourier-transform spectrometer. Absorption spectra in the near-IR (NIR) range from 3900 to 7500 cm$^{-1}$ were measured using a Bruker IR microscope attached to the spectrometer. Measuring conditions were tungsten light source, CaF$_2$ beamsplitter, liquid N$_2$-cooled narrow-band mercury cadmium telluride (MCT) detector, 4 cm$^{-1}$ resolution, and 100 scans per sample. Doubly polished plates with about 450 μm thickness were used. The thickness was measured with a micrometer to ±2 μm. Some measurements were also carried out on thinner plates; all peaks in the near IR scaled directly proportional to the thickness of the samples, implying that they represent species dissolved in the glass and are not due to surface-absorbed material. Moreover, the spectra were independent of the time the samples had been stored in a desiccator. Mid-IR (MIR) absorption spectra from 600 to 4000 cm$^{-1}$ were acquired using a globar source, a KBr beamsplitter, and an MCT detector. There were 200 scans with 1 cm$^{-1}$ resolution for each sample. Samples were either very thin (10–15 μm) doubly polished plates or KBr-pellets. IR absorption spectra in the far-IR (FIR) range from 150 to 700 cm$^{-1}$ were measured in the evacuated sample chamber of the spectrometer with a mercury discharge lamp, 3.5 μm Mylar beamsplitter, DTGS detector, 2.0 cm$^{-1}$ resolution, and 400–1000 scans per sample. Both doubly polished plates with 10–50 μm thickness and polyethylene pellets were used.

Raman spectra were measured in 155° scattering geometry with the 514.5 nm line of a Coherent Ar$^+$ ion laser, a SPEX 1877 triplemate spectrometer and a Photometrics CCD camera cooled by liquid N$_2$. Wavenumbers were calibrated against the lines of an Ne discharge lamp. Resolution is about 4 cm$^{-1}$. Spectra were measured on the same doubly polished plates as used for the NIR measurements. High-quality data were acquired by overlapping spectral windows, each covering approximately 400 cm$^{-1}$ with accumulation times of typically from 10 to 60 min per scan and about 1.0 W laser power at the sample. The Raman spectra measured in different spectral windows were first converted into counts per minute, Fourier smoothed, rebinned with constant step of Δλ = 1 cm$^{-1}$ using a spline interpolation and then merged together using a least-squares procedure. The measurement of absolute Raman intensities is very difficult (Long 1977). Therefore, we have normalized the Raman spectra, requiring that the integrated area in the range 100–1200 cm$^{-1}$ equals 1000. These first-order Raman spectra $I_v(v)$ were then corrected for frequency and temperature effects using the expression:

$$I_v(v) = v[1 - \exp(-hνc/kT)]I_v(v)/(v_v - v)^{4}$$ (1)

where h is the Plank’s constant, c is the speed of light, k is the Boltzmann constant, and v_v is the wavenumber of the incident laser light (Long 1977). Polarized (VV and VH) spectra were recorded using a dichroic sheet polarizer (Melles Griot) in the scattered beam. The accuracy ΔP of the depolarization ratio $P = I_{VV}/I_{VH}$ was estimated to be ΔP = ±0.02 by measuring the A$_1$ fundamental vibration of CCl$_4$ liquid at about 460 cm$^{-1}$ (Long 1977).

All 29Si MAS NMR spectra were recorded on a Bruker
Magnetic Resonance Imaging (MRI) spectrometer with a spinning frequency of 4 kHz. Pulse length was 2.5 μs with a relaxation delay of 30 s. These conditions were checked and found appropriate for quantification purposes (Kümmelen et al. 1992). In particular, measurements with variable relaxation delay ranging from 15 to 240 s yielded no significant variation in the shape or intensity of the spectra, demonstrating the absence of differential relaxation (J. Kümmelen, personal communication). For high signal-to-noise ratios, up to 6000 scans were accumulated using 200 mg of powdered sample. No apodization or baseline correction was carried out. The 29Si chemical shifts of all samples are reported relative to TMS (tetramethylsilane). The total area of the spinning sidebands was only about 6.5% of the intensity in the center of the spectrum; therefore, the sidebands were not considered in the quantification of the spectra. Additional experimental details and complementary NMR data will be discussed elsewhere (Schaller et al., in preparation).

RESULTS AND DISCUSSION

Q-species distribution

The structure of the silicate network in a glass is mainly determined by the degree of polymerization of the silicate tetrahedra and described by the abundance of different Qn species, where Qn denotes a tetrahedron linked by bridging O atoms to n adjacent tetrahedra. The range of n is 0 (isolated tetrahedra) to 4 (fully polymerized three-dimensional network). Anhydrous Na$_2$Si$_4$O$_9$ glass contains 0.5 Na ions per Si, thus on the average only one O atom in every second tetrahedron is saturated by Na and not available for bridging two tetrahedra. Accordingly, one would expect that dry Na$_2$Si$_4$O$_9$ glass contains about 50% Q4 and about 50% Q2 species in close agreement with 29Si MAS NMR measurements (Dupree et al. 1984; Emerson et al. 1989; Maekawa et al. 1991). The effect of water on the Q-species distribution can be monitored both by 29Si MAS NMR spectroscopy and by Raman measurements in the Si-O stretching region around 1100 cm$^{-1}$. However, whereas obtaining the Q-species distribution from 29Si NMR data is rather straightforward, controversies remain regarding the assignment of Raman peaks (McMillan 1994).

Representative 29Si NMR spectra of hydrous sodium tetrasilicate glasses (Fig. 1) were decomposed into three Gaussian components centered at about −80, −93, and −104 ppm that directly give the abundance of the Q2, Q3, and Q4 species (Engelhardt and Michel 1987). The precise peak position, band width, and intensity were not constrained in the fitting procedure. Excellent fits were
Table 1. Q-species distribution from ²⁹Si MAS NMR experiments

<table>
<thead>
<tr>
<th>H₂O (wt%)</th>
<th>Q² (%)</th>
<th>Q³ (%)</th>
<th>Q⁴ (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>48.0</td>
<td>52.0</td>
<td></td>
</tr>
<tr>
<td>2.62 ± 0.05*</td>
<td>2.4 ± 0.5</td>
<td>59.8 ± 0.4</td>
<td>37.8 ± 0.3</td>
<td>this study</td>
</tr>
<tr>
<td>4.80</td>
<td>3.0</td>
<td>66.0</td>
<td>30.0</td>
<td></td>
</tr>
<tr>
<td>7.34 ± 0.45*</td>
<td>7.6 ± 0.2</td>
<td>62.0 ± 0.4</td>
<td>30.4 ± 0.2</td>
<td>this study</td>
</tr>
<tr>
<td>9.1</td>
<td>17.0</td>
<td>63.0</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>10.0 ± 0.35*</td>
<td>8.9 ± 0.4</td>
<td>66.2 ± 0.5</td>
<td>24.9 ± 0.4</td>
<td>this study</td>
</tr>
</tbody>
</table>

Note: [1] Kümmerlen et al. 1992. The errors in the Q-species are calculated from the least-squares decomposition.
* Determined by Karl-Fischer titration.

With increasing water content, the abundance of Q⁴ units in the glass clearly decreases (Fig. 4). The structure of the glass is thus depolymerized by water, presumably by formation of SiOH groups from bridging O atoms according to the equation:

\[
\text{Si} - \text{O} + \text{H}_2\text{O} \rightarrow \text{Si-OH} + \text{HO} - \text{Si.} \tag{2}
\]

The formation of Si-OH groups has been associated with the appearance of a new peak around 900 cm⁻¹ in hydrous silicate and aluminosilicate glasses, although assignment of this peak to Si-OH groups has been questioned.
(see McMillan et al. 1993 for discussion). We observe a new weak peak at about 910 cm$^{-1}$ in the polarized (VV and VH) spectra of the hydrous sodium tetrasilicate glasses (Figs. 2 and 3), with a depolarization ratio of 0.35 ± 0.12. Its integral intensity increases with increasing total water content up to 6 wt% (Fig. 5) and then levels off and is accompanied by a slight increase in frequency. The 910 cm$^{-1}$ band in the hydrous sodium tetrasilicate glasses exhibits a small negative isotopic shift of about 20 cm$^{-1}$ ($\nu_D/\nu_0 = 1.022$), whereas the remaining Raman bands in the Si-O stretching region are not affected by deuteration. This isotopic shift resembles the value expected for a simple harmonic oscillator ($\nu_D/\nu_0 = (M_{\text{OH}}/M_{\text{OH}})^{0.5} = (18/17)^{0.5} = 1.029$). Much smaller isotopic shifts $\nu_D/\nu_0 = 1.004$ for the band close to 900 cm$^{-1}$ have been observed in hydrous aluminosilicate glasses (Mysen et al. 1980; Mysen and Virgo 1986; McMillan et al. 1993) and used to argue against assigning this band to Si-OH vibrations (or Al-OH vibrations in aluminosilicate glasses). The small isotopic shift in hydrous albite glasses was tentatively explained by McMillan et al. (1993) on the basis of the Redlich-Teller product rule. Because the strength of the vibrational coupling (respectively the degree of localization of the vibrational modes) should decrease with depolymerization, this effect should be weaker in hydrous tetrasilicate than in hydrous feldspar glasses. This is consistent with the larger isotopic shift observed in our study and therefore supports the interpretation of McMillan et al. (1993) that the band around 900 cm$^{-1}$ is indeed due to Si-OH or Al-OH vibrations.

Water also strongly affects the Raman spectra of the sodium tetrasilicate glasses around 600 and 800 cm$^{-1}$. The polarized peak at about 600 cm$^{-1}$ is usually assigned to planar three-membered rings (Kubicki and Sykes 1993; Zotov et al. 1993 and references therein). This peak decreases in intensity in the hydrous glasses and disappears completely above 3 wt% total water (Fig. 2). The presence of a relatively large number of three-membered rings in the structure of the anhydrous sodium tetrasilicate glass was confirmed by reverse Monte Carlo simulations (Zotov and Keppler 1998). The Si-O-Si bond angle in planar three-membered rings is 130.5$^\circ$ (Galeener 1982), which corresponds to very high-strain energy (Newton and Gibbs 1980), and therefore these bonds would be the first in the silicate network to react with water. The changes in the rest of the polarized Si-O-Si and O-Si-O bending modes in the range 200–700 cm$^{-1}$ (depolarization ratios 0.08–0.15) are much more subtle. The integral intensity of the band at about 800 cm$^{-1}$ (Fig. 2), decreases rapidly with increasing water content up to 6 wt% after which levels off (Fig. 5). According to preliminary calculations of Raman spectra (Zotov and Keppler, in preparation), this band arises from cage-like vibrations of Si atoms mainly in Q4-tetrahedra. The decrease of this band therefore directly reflects the disruption of the three-dimensional network structure of the glass.

The frequencies of all major Raman bands are nearly independent of water content, except that the 1100 cm$^{-1}$ component slightly decreases with water (Fig. 6). The mid-IR and far-IR spectra below 1200 cm$^{-1}$ are generally similar to the Raman spectra, with comparable variations with water content. Because the bands in the IR spectra are generally broader and show less fine structure, these IR results are not discussed further.

Depolymerization mechanism

Below about 3.5 wt% total water, the Q4 species in the glass matrix decrease, whereas the Q2 units increase correspondingly and the Q1 units are hardly affected (Fig. 4). This suggests that water initially reacts with the O atoms bridging two Q4 units according to $Q^4 - Q^4 \rightarrow Q^1 + Q^3$. In this low water content regime, the Q1 units are essentially not attacked by water, although they initially occur in the glass with approximately the same abundance as the Q4 species. This situation changes above 6 wt% total water. Here, the abundance of Q1 units remains constant whereas the Q2 species slowly increase at the expense of Q4. This suggests that water reacts with O atoms bridging two Q4 tetrahedra according to $Q^4 - Q^1 \rightarrow Q^1 + Q^2$. For intermediate compositions (3.5 to 6 wt% total water), the Q4 + Q1 + Q2 and Q1 + Q2 + Q3 mechanisms compete.

The above depolymerization mechanisms can be rationalized by strain-energy considerations. Reverse Monte Carlo simulations (Zotov and Keppler 1998) of the structure of the anhydrous sodium tetrasilicate glass revealed that the Q1-O-Q1 bridges have an asymmetric bond angle distribution with a maximum at about 120$^\circ$ (Fig. 7) and mean value 133$^\circ$ ± 16$^\circ$, whereas the Q1-O-Q3 distribution is more symmetric with mean value at about 138$^\circ$ ± 16$^\circ$. The Q1-O-Q4 distribution is more symmetric with mean value at about 138$^\circ$ ± 16$^\circ$ and the Q1-O-Q2 distribution is bimodal with maxima at about 125 and 165$^\circ$, respectively. The dependence of the potential energy of the Si-O, dimer on the Si-O-Si bond angle (Newton and Gibbs 1980) implies that the Q1-O-Q1 bonds have a larger strain energy than the Q1-O-Q2 or Q1-O-Q3 species. Therefore, water would initially react with the O atoms in Q1-O-Q1 bridges, leading to an increase of the Q2 species and corresponding decrease of the Q4 species. This explains the observed changes in the Q species distribution at low-water content and suggests that the changes in the depolymerization mechanism at higher-water content are also related to changes in the bond-angle distribution of the different O-Q-O-Q1 species.

Water speciation

The concentrations of molecular H$_2$O and of OH groups in silicate glasses can be determined from the combination bands in the near IR spectra (Batholomew et al. 1980; Stolper 1982). The 5250 cm$^{-1}$ band is commonly assigned to the combination mode of the stretching and bending vibrations of the H$_2$O molecule. The 4500 cm$^{-1}$ band is believed to be due to a combination of the O-H and Si-OH stretching vibrations of hydroxyl groups attached to Si. The 5250 and 4500 cm$^{-1}$ bands, as well as the band at about 4000 cm$^{-1}$, are superimposed on a
non-linear background that represents the tail of the O-H fundamental at about 3600 cm\(^{-1}\). To correct for this background, a spline-function was fitted through the points below 3800 cm\(^{-1}\), the minima between the 4000, 4400, and 5250 cm\(^{-1}\) bands and the tail beyond 5500 cm\(^{-1}\) (Fig. 8). Integrated intensities \(A_{\text{H}_2\text{O}}\) and \(A_{\text{OH}}\) of the 5250 and 4500 cm\(^{-1}\) bands were determined by numerical integration. The percentage (in weight percent) of the water present as \(\text{H}_2\text{O}\) molecules and OH groups is related to the integral intensities \(A_{\text{H}_2\text{O}}\) and \(A_{\text{OH}}\) by the Lambert-Beer law:

\[
\begin{align*}
 c_{\text{H}_2\text{O}} &= MA_{\text{H}_2\text{O}}/\rho t e_{\text{H}_2\text{O}} \\
 c_{\text{OH}} &= MA_{\text{OH}}/\rho t e_{\text{OH}}
\end{align*}
\]

where \(M\) is the molar weight of water (18.02 g/mol), \(\rho\) is the density of the glass, \(t\) is the thickness of the sample, and \(e_{\text{H}_2\text{O}}\) and \(e_{\text{OH}}\) are the corresponding integral molar extinction coefficients (in l/mol-cm\(^2\)) of \(\text{H}_2\text{O}\) and \(\text{OH}\), respectively. Together with the relationship

\[
 c_{\text{tot}} = c_{\text{H}_2\text{O}} + c_{\text{OH}}
\]

where \(c_{\text{tot}}\) is the total water content, these equations can be combined to give

\[
 (tc_{\text{tot}})A_{\text{OH}}/M = 1/te_{\text{OH}} + (1/te_{\text{H}_2\text{O}})(A_{\text{H}_2\text{O}}/A_{\text{OH}}).
\]

A least-squares fit to this equation (Fig. 9) yields integrated extinction coefficients of \(e_{\text{OH}} = 56.0 \pm 6.9\) l/mol-cm\(^2\) and \(e_{\text{H}_2\text{O}} = 146.8 \pm 19.0\) l/mol-cm\(^2\). The fact that the data for all glasses can be fitted to a straight line without significant deviation from linearity implies that the extinction coefficients are constant over the concentration range studied. The integral extinction coefficient of the \(\text{H}_2\text{O}\) band is about two times the value for \(\text{OH}\); a similar ratio was reported by Acocella et al. (1984) for linear extinction coefficients in hydrous sodium trisilicate glasses. With these extinction coefficients, the concentrations of \(\text{OH}\) groups and molecular \(\text{H}_2\text{O}\) were calculated (Fig. 10 and Table 3). At low concentrations, water is mostly dissolved as \(\text{OH}\) groups in the glass, whereas at high water contents molecular \(\text{H}_2\text{O}\) dominates. Similar behavior has been reported for various hydrous silicate glasses (e.g., Bartholomew et al. 1980; Stolper 1982; Acocella et al. 1984).

The shape of the \(\text{OH}\) band at 4500 cm\(^{-1}\) is almost symmetric, but the \(\text{H}_2\text{O}\) band (5250 cm\(^{-1}\)) has a long asymmetric tail extending down to 4750 cm\(^{-1}\). Asymmetric shapes were reported also by Langer and Flörke (1974), Stolper (1982), Behrens et al. (1996), Yanev and Zotov (1996), and others. The origin of the asymmetry of the 5250 cm\(^{-1}\) band and the true profile shape are still not...
TABLE 2. Relative integral intensities of Raman bands and corresponding Q-species distribution

<table>
<thead>
<tr>
<th>H2O (wt%)</th>
<th>l_{Q2}†</th>
<th>l_{Q3}‡</th>
<th>l_{Q4}§</th>
<th>l_{Q5}#</th>
<th>Q2 (%)**</th>
<th>Q3 (%)**</th>
<th>Q4 (%)**</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>24.1 ± 7.3</td>
<td>107.3 ± 5.4</td>
<td>285.0 ± 6.7</td>
<td>335.7 ± 4.4</td>
<td>3.2 ± 1.0</td>
<td>52.2 ± 2.0</td>
<td>44.6 ± 1.3</td>
</tr>
<tr>
<td>2.62 ± 0.05</td>
<td>28.0 ± 3.6</td>
<td>89.9 ± 5.0</td>
<td>296.7 ± 5.2</td>
<td>264.6 ± 3.8</td>
<td>4.1 ± 0.6</td>
<td>56.9 ± 1.8</td>
<td>39.0 ± 1.1</td>
</tr>
<tr>
<td>3.29 ± 0.16</td>
<td>32.9 ± 5.3</td>
<td>186.2 ± 7.5</td>
<td>310.4 ± 4.5</td>
<td>206.0 ± 3.2</td>
<td>4.5 ± 0.8</td>
<td>67.5 ± 2.2</td>
<td>28.0 ± 0.8</td>
</tr>
<tr>
<td>5.66 ± 0.17</td>
<td>52.5 ± 10.1</td>
<td>174.3 ± 8.7</td>
<td>284.6 ± 6.7</td>
<td>144.8 ± 3.2</td>
<td>8.0 ± 1.8</td>
<td>69.9 ± 3.3</td>
<td>22.1 ± 1.0</td>
</tr>
<tr>
<td>7.94 ± 0.45</td>
<td>61.1 ± 21.1</td>
<td>164.4 ± 25.2</td>
<td>241.4 ± 12.5</td>
<td>149.2 ± 2.5</td>
<td>9.9 ± 4.0</td>
<td>65.9 ± 8.3</td>
<td>24.2 ± 1.8</td>
</tr>
<tr>
<td>10.0 ± 0.35</td>
<td>88.8 ± 16.8</td>
<td>175.3 ± 16.6</td>
<td>220.2 ± 12.0</td>
<td>146.1 ± 2.6</td>
<td>14.1 ± 3.3</td>
<td>62.7 ± 5.9</td>
<td>23.2 ± 1.4</td>
</tr>
</tbody>
</table>

* Determined by Karl-Fischer titration.
† Intensity of the Raman band near 950 cm$^{-1}$.
‡ Intensity near 1040 cm$^{-1}$.
§ Intensity near 1100 cm$^{-1}$.
Intensity near 1150 cm$^{-1}$.
** The standard deviations $\sigma(l_{Q2})$, $\sigma(l_{Q3})$, and $\sigma(l_{Q4})$ of the integral intensities are determined from the least-squares Gaussian fits: $\sigma(Q^i) = 100[\sigma(l_{Qi})/A + \sigma(A)/A^2]$, where A is the total area of the $Q^i + Q^{i+1} + Q^{i+2}$ bands and $\sigma(A)$ is the corresponding standard deviation, calculated by $\sigma^2(A) = \sigma^2(l_{Qi}) + \sigma^2(l_{Qi+1}) + \sigma^2(l_{Qi+2})$.

well understood. We have tentatively modeled the 5250 cm$^{-1}$ band using slightly asymmetric Gaussian function centered at about 5245 cm$^{-1}$ and a second much broader Gaussian function centered at about 5140 cm$^{-1}$. Except for the sample with 2.6 wt% total water, the intensity ratio of these two components is practically constant for all concentrations studied. This justifies the use of one single-integral molar extinction coefficient encompassing both components.

The IR band at 4500 cm$^{-1}$ has been attributed to OH groups attached to a tetrahedral cation, i.e., Si or Al (Batholomew et al. 1980; Stolper 1982). However, this interpretation has been questioned on the basis of NMR data on hydrous aluminosilicate glasses (Kohn et al. 1989). Instead of forming Si-OH groups, water would be incorporated in the glass as molecular H2O, OH groups attached to Na ions and protons attached to bridging O atoms (Kohn et al. 1989; Pichavant et al. 1992). The above data can quantitatively test assignment of the 4500 cm$^{-1}$ band. The data on the Q-species distribution from NMR and Raman spectra (Tables 1 and 2), imply an average number on nonbridging O atoms per Si.
Figure 6. Peak positions of the principal Raman bands as function of total water content. Protonated samples (full symbols), deuterated samples (empty symbols). The dashed lines are linear regression fits.

\[
\text{NBO/Si} = \sum (4 - n)x_n
\]

where \(x_n\) is the fraction of \(Q^n\) species in the glass (normalized to \(\sum x_n = 1\)). An independent measure of NBO/Si is obtained from Table 3, assuming that the OH content derived from the intensity of the 4500 cm\(^{-1}\) band is exclusively due to Si-OH groups. With this assumption, every OH will generate one additional NBO/Si, starting with an average NBO/Si of 0.5 for the anhydrous glass. These two calculations are in perfect agreement (Fig. 11), confirming that the combination band at 4500 cm\(^{-1}\) is

Figure 7. Distribution of Si-O-Si bond angles for different \(Q^n\)-O-\(Q^m\) species according to a model of the anhydrous sodium tetrasilicate glass obtained by reverse Monte Carlo simulations: \(Q^1\)-O-\(Q^1\) (full line), \(Q^1\)-O-\(Q^2\) (dashed line), \(Q^1\)-O-\(Q^3\) (dotted line).

Figure 8. Baseline-corrected near IR spectra of hydrous sodium tetrasilicate glasses with 2.62 wt% total water (full line), 3.29 wt% (long-dash line), 5.86 wt% (medium-dash line), 7.34% (short-dash line) and 10.0 wt% (dotted line). All spectra are normalized to 450 \(\mu\)m thickness. The inset shows the raw spectrum (full line) of the sample with 3.29 wt% total water together with background (dashed line).

Figure 9. Plot of \((t_{c,\text{tot}}) / \text{MA}_{\text{OH}}\) vs. the ratio of the integral absorbances \(A_{\text{H}_2\text{O}} / A_{\text{OH}}\). The dashed line is a linear regression fit.
really due to Si-OH groups and that insignificant amounts of Na-OH species or protons attached to bridging O atoms are present. The same conclusion was reached by Kümmerlen et al. (1992) based on 1H → 29Si cross polarization NMR experiments. Moreover, comparison of Figures 5 and 9 shows that the intensity of the Si-OH band in the Raman spectra at about 910 cm$^{-1}$ varies proportionally to the abundance of OH groups as derived from the 4500 cm$^{-1}$ band in the near IR spectra. All these observations, together with the isotopic shift of the 910 cm$^{-1}$ band upon deuteration, establish beyond any reasonable doubt that both the 910 cm$^{-1}$ band and the 4500 cm$^{-1}$ band are due to vibrations of Si-OH groups.

Hydrogen bonding

Whereas the near IR spectra provide information on the relative abundance of OH groups and molecular H$_2$O, the effects of different hydrogen bond strengths can be seen in the fundamental OH stretching region of the IR and Raman spectra (Figs. 12 and 13). The three well-resolved peaks at 3580, 3000, and 2350 cm$^{-1}$ correspond to hydrous species (OH or H$_2$O) with OH...O distances of 3, 2.7, and 2.55 Å, respectively (Nakamoto et al. 1955). All distances have uncertainties of ±0.05 Å. The species responsible for the 3580 cm$^{-1}$ band experience almost no hydrogen bonding, whereas the 2350 cm$^{-1}$ band is due to some structural units with strong hydrogen bonding. The relative intensities of the three bands differ between the Raman and IR spectra, due to the well-known effect of hydrogen-bonding on IR extinction coefficients (Pimental and McClellan 1960; Paterson 1982; Buback et al. 1987). With increasing hydrogen bonding, i.e., decreasing stretching frequency, IR extinction coefficients increase by orders of magnitude, whereas Raman scattering cross sections are hardly affected (Scherer 1978; Buback et al. 1987). Accordingly, the Raman spectra in Figure 13 probably give a more direct picture of the relative abundance of the various species. Thus, the units with strong hydrogen bonding (2350 cm$^{-1}$ band) make up only about 3% of the hydrous species, whereas the weakly hydrogen bonded species (3580 cm$^{-1}$ band) represent 25%. Upon deuteration, all three main bands shift to lower frequency (Fig. 14). The frequency ratio $\nu_{\text{OD}}/\nu_{\text{OD}}$ for the 3580 cm$^{-1}$ band is between 1.35 and 1.38 and is between 1.28 and 1.34 for the 3000 cm$^{-1}$ band.

TABLE 3. Water speciation in hydrous sodium tetrasilicate glasses

<table>
<thead>
<tr>
<th>Total water (wt%)</th>
<th>c_{OH} (wt%)‡</th>
<th>$c_{\text{H}_2\text{O}}$ (wt%)‡</th>
<th>c_{TOT} (wt%)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.62 ± 0.05</td>
<td>2.15 ± 0.27</td>
<td>0.34 ± 0.06</td>
<td>2.49 ± 0.28</td>
</tr>
<tr>
<td>3.29 ± 0.16</td>
<td>2.42 ± 0.30</td>
<td>0.95 ± 0.14</td>
<td>3.37 ± 0.33</td>
</tr>
<tr>
<td>5.86 ± 0.17</td>
<td>2.98 ± 0.36</td>
<td>2.75 ± 0.37</td>
<td>5.71 ± 0.52</td>
</tr>
<tr>
<td>7.34 ± 0.45</td>
<td>3.88 ± 0.46</td>
<td>4.24 ± 0.57</td>
<td>8.10 ± 0.74</td>
</tr>
<tr>
<td>10.0 ± 0.35</td>
<td>3.85 ± 0.46</td>
<td>5.68 ± 0.76</td>
<td>9.53 ± 0.89</td>
</tr>
</tbody>
</table>

* Determined by Karl-Fischer titration.
‡ $\sigma(c_{\text{OH}}) = K(c_{\text{OH}})$, where K = 18.02/pt and $\sigma(c_{\text{OH}})$ are the corresponding standard deviations of the extinction coefficients and the integral NIR intensities.

FIGURE 11. Dependence of the number of non-bridging O atoms per silicon (NBO/Si) on the total water content: Raman data (empty circles); NMR data (empty squares); and near IR data (full circles). The dashed line is a polynomial fit through all the data points.
The decrease of isotopic shift with decreasing stretching frequency is again a result of increasing hydrogen bonding (Novak 1974). The mid-IR spectra of hydrous sodium tetrasilicate glasses show much more structure than those of aluminosilicate compositions (e.g., Stolper 1982), which usually consist of only one broad asymmetric band without fine structure. It is therefore tempting to assign individual components in the OH-fundamental region either to OH groups or to molecular H$_2$O (e.g., Scholze 1959). However, a close inspection of the data in Figures 10, 12, and 13 show that this is probably not possible. The relative intensities of the three fundamental bands in the Raman and mid-IR spectra (Figs. 12 and 13) are essentially independent of total water content. This is already obvious from a brief visual inspection of the spectra and was confirmed by a quantitative decomposition into Gaussian components. In contrast, the ratio of OH groups to molecular water, as seen from the near IR data (Table 3 and Fig. 10), varies by about an order of magnitude over the studied concentration range. This would suggest that both molecular H$_2$O and OH groups contribute to each peak in the fundamental stretching region, or in other words, the presence of strong hydrogen bonding is unrelated to the relative proportions of H$_2$O and OH. This idea is consistent with the fine structure of the H$_2$O bending mode around 1600 cm$^{-1}$ in the mid-IR spectra (Fig. 12). Three components are resolved at 1580, 1640, and 1730 cm$^{-1}$, possibly corresponding to the three main bands in the stretching region. Hydrogen bonding is well-known to shift the frequency of the H$_2$O bending mode to higher frequencies (Pimental and McClellan 1960). However, the bending modes in the glass spectra are superimposed on some broad features arising from overtones of the Si-O stretching fundamentals, which makes a quantitative deconvolution of the spectra difficult.

The most difficult question concerning the structure of
hydrous glasses is related to the spatial distribution and possible clustering of OH and H$_2$O in the matrix (e.g., Stolper 1982; Eckert et al. 1987). In our recent neutron diffraction study of hydrous tetrasilicate glasses (Zotov et al. 1996), we were able to determine the hydrogen first-order difference correlation function $\Delta G_H(r)$ for the hydrous sodium tetrasilicate glass with 10 wt% total water by isotopic substitution. $\Delta G_H(r)$ represents the sum of all H-involved pair correlation functions. The absence of H...H and H...O distances characteristic for liquid water in $\Delta G_H(r)$ shows that “micropools” or “microinclusions” of molecular H$_2$O with a liquid-like structure do not exist in the glass. However, the changes observed by neutron diffraction in the first coordination shell of Na$^+$ would be consistent with the formation of a hydration shell of H$_2$O molecules around this ion, although the evidence is not conclusive. Water molecules surrounding alkali ions occur in the minerals analcime and pollucite. Interestingly, the stretching frequency of the water molecules in these minerals is at about 3620 cm$^{-1}$ (Farmer 1974), very close to the 3580 cm$^{-1}$ band observed in the hydrous sodium tetrasilicate glasses. Finally, a combination of 1H relaxational NMR and two-dimensional 1H spin-exchange NMR experiments suggest that in the hydrous sodium tetrasilicate glass with 4 wt% total water, the arrangement of the Si-OH and the H$_2$O species in clusters containing solely H$_2$O or solely Si-OH is very unlikely (Schaller and Sebald 1995).

Comparison with hydrous aluminosilicate glasses

All spectroscopic results presented here were obtained on hydrous sodium tetrasilicate glass and as such are not directly applicable to the more complex aluminosilicate systems. However, the near IR spectra of hydrous aluminosilicate glasses is strikingly similar to that of sodium tetrasilicate glass (Fig. 15). In our study we have shown beyond any reasonable doubt that the 4500 cm$^{-1}$ band in the hydrous sodium tetrasilicate glass is due to Si-OH groups. However, it has been suggested that hydrous albite glass and similar aluminosilicate glasses do not contain appreciable amounts of Si-OH or Al-OH (Kohn et al. 1989). This is difficult to reconcile with the appearance of a band at 4500 cm$^{-1}$ in the near IR spectra of these glasses, with virtually the same position, shape, width, and similar extinction coefficient as in sodium tetrasilicate glass. This problem becomes even more obvious if one compares the evolution of OH and H$_2$O species concentration with total water content, as derived from the intensities of the 4500 and 5200 cm$^{-1}$ bands. Figure 16 shows that these curves are rather similar for hydrous albite and sodium tetrasilicate glass, suggesting a generally similar dissolution mechanism of water, involving formation of Si-OH or Al-OH groups and depolymerization of the glass structure.

Acknowledgments

We thank Torsten Schaller for measuring the 29Si NMR spectra and discussing the results with us, Anna Dietel for ICP analyses, and Hubert Schulze for sample preparation. John Sowerby kindly provided the near IR spectrum of hydrous rhyolite glass. This work was supported by German Science Foundation (DFG, Ke 501/2-1).

References cited

