The hydrous component in andradite garnet

GEORG AMTHAUSER* and GEORGE R. ROSSMAN†

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, U.S.A.

ABSTRACT

Twenty-two andradite samples from a variety of geological environments and two synthetic hydroandradite samples were studied by Fourier transform IR spectroscopy. Their spectra show that H enters andradite in the form of OH⁻. Amounts up to 6 wt% H₂O occur in these samples; those from low-temperature formations contain the most OH⁻. Some features in the absorption spectra indicate the hydrogarnet substitution $(\text{SiO}_4)^{-} \leftrightarrow (\text{O}_4\text{H}_4)^{-}$ whereas others indicate additional types of incorporation. The complexity of the increases with increasing complexity of the garnet composition.

INTRODUCTION

Systematic studies have shown that hydroxide is a common minor component of grossular and pyrope-almandine-spsessartite garnets (Aines and Rossman 1985; Rossman and Aines 1991). Comparable surveys of andradite garnet have not been previously presented. Several reports indicate that appreciable amounts of OH⁻ can be incorporated in both natural and synthetic andradite-rich garnet (Flint et al. 1941; Peters 1965; Gustafson 1974; Suwa et al. 1976; Onuki et al. 1982; Huckenholz and Fehr 1982; Marcke de Lummen 1986; Kobayashi and Shoji 1987; Kühberger et al. 1989; Wise and Moller 1990; Armbruster and Geiger 1993; Armbruster 1995). Furthermore, elevated OH⁻ contents have been reported in other Fe³⁺-rich garnets such as melanite (Lager et al. 1989) and schorlomite (Locock et al. 1995), which suggests that H incorporation in Ca-Fe³⁺ garnet may be a general phenomenon. Solid-solution relationships between andradite, Ca₃Fe₂(SiO₄)₃, and hydroandradite, Ca₃Fe₂(OH)₁₂, are now established experimentally, and the amount of the hydroandradite component in andradite may be used as a geothermometer (Huckenholz and Fehr 1982).

Only a few of these studies provide direct evidence of structural OH⁻ in andradites by spectroscopic or diffraction methods. Kobayashi and Shoji (1987) report IR spectra of some synthetic andradite-hydroandradite solid solutions. Locock et al. (1995) report an absorption band due to OH⁻ at 3564 cm⁻¹ in the IR spectrum of the Ice River schorlomite with 0.036 wt% H₂O. In a crystallographic study, Lager et al. (1989) were unable to locate the H in an andradite (melanite variety) with up to 14% of the Si sites empty. In such H-rich garnets, OH⁻ most probably occupies tetrahedral sites whereby charge balance is achieved by the well-known hydrogarnet substitution $(\text{SiO}_4)^{-} \leftrightarrow (\text{O}_4\text{H}_4)^{-}$. This observation has been confirmed by XRD of a hydrous andradite with a Si deficiency of about 50%, and a high OH content (Armbruster 1995). The structure of this particular sample with space group ia₃d is composed of disordered microdomains containing (SiO_4) and (O_4H_4) tetrahedral units.

The aim of the present investigation was to perform a Fourier transform infrared (FTIR) study on different samples of andradite (including Ti-rich melanite) from various geological environments, i.e., different pressures and temperatures of formation, to determine (1) if various types of structural incorporation of OH⁻ occurs in andradite as in other natural garnets or if there is only the hydrogarnet substitution; (2) the amount of OH that is incorporated in natural andradites; (3) if a correlation exists between the chemical composition and the complexity of the spectra; and (4) the pressure and temperature dependence of OH⁻ incorporation. Finally, (5) we compare spectroscopic properties of OH⁻ in natural garnets to those in synthetic hydroandradite.

EXPERIMENTAL METHODS

Samples were obtained mainly from museums. Details of samples, localities, and geological environments are presented in Table 1. The IR spectra of the natural crystals were recorded from doubly polished single crystals with almost parallel surfaces. The thicknesses of the platelets were between 11.5 and 1185 μm. Measurements were made on clear and inclusion-free as well as crack-free areas of the crystals. In those crystals where color zonation was present, spectra were taken from a selected number of relatively homogeneous parts of the crystal. IR spectra were measured from 114 μm × 114 μm areas using a Nicolet 60SX-FTIR spectrometer equipped with the NicPlan IR microscope and an HgCdTe detector (Rossman and Aines 1991). A 15X reflecting objective and a 10X condenser were used for the measurements. A resolution of 2 cm⁻¹

* Permanent address: Institut für Mineralogie, Universität Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria.
† E-mail: grr@gps.caltech.edu
was chosen for most samples with 1000 scans suitable to produce high-quality spectra. Reference spectra were taken in air. In addition, some reflectance spectra from synthetic garnet powders were taken with the same experimental setup using polished Au as a reference. Comparison of single-crystal spectra and reflectance spectra of the same garnet sample revealed a similar resolution of the OH features in each case.

Because an independent calibration of the OH\(^-\) concentration in andradite does not exist, the calibration of Rossman and Aines (1991) for grossular was used to estimate the H content of andradite. The integrated absorbance under the OH\(^-\) stretching region of the IR spectrum (normalized to a 1 cm thick sample) is determined and the H content is obtained by reference to the grossular calibration.

Chemical analyses of the samples were performed with an automated JEOL 733 electron microprobe using a 15 nA beam current. Data were corrected using the program CITZAF (Armstrong 1988) employing the absorption correction of Armstrong (1982), the atomic number correction of Love et al. (1978), and the fluorescence correction of Reed (1965) as modified by Armstrong (1988). The structural formulae of the samples normalized to 12 O atoms are reported in Table 1.

Andradite-hydroandradite solid solutions were synthesized hydrothermally from glass of an appropriate composition at temperatures between 300 and 400 °C, pressures of 1.5 and 2.0 kbar, and the oxygen fugacities of the hematite + magnetite buffer (Tippelt and Amthauer, in preparation). Purity and homogeneity of the samples were checked by XRD of powders using CuK\(_\alpha\)-radiation. The chemical composition, in particular the OH\(^-\) content, X was calculated from the lattice constant \(a_0\) according to the regression equation of Huckenholz and Fehr (1982)

\[
a_0 = 12.057 + 0.4906 X + 0.2379 X^2 - 0.0824 X^3.
\]

The small grain sizes (<20 \(\mu\)m) and morphology of the synthetic samples made it impractical to obtain spectra from single crystals; therefore only powder spectra were taken of the synthetic garnet.

RESULTS

The IR spectra of three andradite samples from serpentinites are shown in Figure 1. GRR134 is representative of almost pure andradite and exhibits the simplest spectrum, i.e., a dominant absorption band at 3555 cm\(^{-1}\). Weak higher energy absorptions and a weak shoulder on the low energy site of the main peak are also present. The IR spectrum of andradite from the Ural mountains (GRR1765) looks almost identical. This garnet is also almost pure end-member andradite with minor amounts of Mg (0.01 wt%), Al (0.01 wt%), and Cr (0.05 wt%). Both are clear and contain 0.10 wt% H\(_2\)O. The spectrum of the San Benito andradite (GRR1263) is more complex. Although the overall intensity is lower (0.01 wt% H\(_2\)O), it
exhibits distinct peaks at the high energy side of the main peak where the other two showed only weak absorptions. Even though this particular sample was lost before it could be chemically analyzed, it can be concluded by comparison with the chemical composition of other andradites from San Benito (Table 1) that its chemical diversity and complexity is greater than those of the other two andradite samples illustrated in Figure 1.

The IR spectrum of an andradite occurring with zeolites and jüngelitite, Ca₂Fe³⁺(Fe⁺²−Al)₆(SiO₄)₃(OH)₂H₂O, in vugs in a basalt near Bombay, India, is displayed in Figure 2. The reason for this difference is not known. We also note that the most intense peak at 3555 cm⁻¹ in the spectrum of the Val Malenco andradite occurs close to the same wavenumber as the strongest absorption band in the spectra of natural and synthetic hydroandradites.

The IR spectrum of melanite from Rusinga Island (Fig. 3) shows two main peaks of low intensity near 3530 and 3560 cm⁻¹ superimposed on the low energy flank of a strong absorption in the NIR, which is most probably due to Fe²⁺ in the tetrahedral sites of the garnet. The spectrum is representative of the low OH⁻ content garnets (0.02 wt% H₂O) from volcanic environments such as the melanites from Kaiserstuhl and Magnet Cove, whose spectra show many similarities.

The IR spectrum (Fig. 4) of an andradite from Stanley Butte, Arizona, (GRR1137) with 0.40 wt% H₂O is representative of andradite from skarns. It exhibits a higher degree of complexity, i.e., four resolved peaks between 3550 and 3630 cm⁻¹ and three shoulders at higher energies between 3630 and 3700 cm⁻¹.

Five spectra of different zones of a melanite from Santa Rita Peak, San Benito County, California, are displayed in Figure 5. This melanite formed at similar P-T conditions as the andradite from the same occurrence.
FIGURE 1. Comparison of the IR spectra of natural andradites from serpentinites. From top to bottom: Ural mountains, USSR (GRR1765); Val Malenco, Italy (GRR134); San Benito County, California (GRR1263). The spectra are plotted for 1 mm crystal thickness.

The OH$^-$ contents (as H$_2$O) are determined from the integral absorbance (Table 1). Most samples are heterogeneous. Variability as large as a factor of two is common. The tabulated values represent averages of several spectra taken from different points on a given sample. In almost pure end-member andradite and other yellow-green andradite from serpentinites, the amount of OH$^-$ is small (<0.01 to 0.15 wt% H$_2$O). As their Ti-content increases and they become deeply colored melanite, their OH$^-$ content increases up to about 2.5 wt% H$_2$O. The OH$^-$ contents of skarn andradite vary between <0.01 and 1.44 wt% H$_2$O. The OH$^-$ contents of melanite of volcanic origin are generally the lowest (0.01 to 0.04 wt% H$_2$O). The highest amount of OH$^-$ we measured is in the hydroandradite from a cavity in a basalt, which obviously is a post magmatic, low-temperature formation. It should be emphasized that all the andradite we have studied contained OH$^-$.

DISCUSSION

Comparison of our spectra with those from similar studies on other natural and synthetic garnets (e.g., Aines and Ross-}

man 1985; Rossman and Aines 1991) shows that H enters the andradite structure in the form of structurally bonded OH$^-$. The similarities to the IR spectra of natural and synthetic hydrogrossular shown in Figure 2 suggest that the substitution SiO$_4$$^{2-}$ \leftrightarrow [(O$_4$H$_4$)$_{2\text{mm}}$O] is important in andradite. The two absorption maxima in the spectra in Figure 2 are explained either by two slightly different substitution mechanisms in the tetrahedron or by different nearest neighbors of (O$_4$H$_4$)$_{2\text{mm}}$, such as (SiO$_4$)$_{2\text{mm}}$ or (O$_4$H$_4$)$_{2\text{mm}}$, respectively (Rossman and Aines 1991). The lower energies of the two maxima in andradite may be related to greater average tetrahedral cation-anion distances in andradite compared to grossular. The absorption peak in the spectra of the andradite from Val Malenco and the Ural Mountains occurs at almost the same energy as the most intense peak in the spectra of the natural and synthetic hydroandradite and therefore may also represent the hydrogarnet substitution. Also, the most intense peak near 3560 cm$^{-1}$ in the spectrum of Figure 3 may be assigned to the hydrogarnet substitution. Locock et al. (1995) report an absorption band at almost the same energy (3564 cm$^{-1}$) in the spectrum of a schorlomite. Diffraction studies (Lager et al. 1989; Armbruster 1995) confirm the importance of the hydrogarnet substitution in andradite as well as melanite.

Despite one additional peak at about 3530 cm$^{-1}$, the
The IR spectrum of andradite (CITH3110) from Rusinga Island, Kenya, is representative of the low OH\(^-\) content garnets from volcanic environments. The increasing absorbance toward the left is from Fe\(^{2+}\) in the tetrahedral site of the garnet structure. The spectrum is scaled for 1 mm crystal thickness.

Figure 4. Comparison of the IR spectra of Stanley Butte andradite (GRR1137, scaled for 1.0 mm), grossular (GRR771, Meralini Hills, Tanzania, scaled for 1.2 mm), and spessartite (GRR43-1, Rutherford no. 2 Mine, Virginia, U.S.A., scaled for 0.7 mm). The spectra of all these garnets exhibit several absorption bands that document multi-site substitution of OH\(^-\).

The spectra of samples of melanite in this study are relatively simple in comparison with most of the other IR spectra of the samples of this study. The complexity of the andradite spectra is seen in the spectra of many other kinds of natural garnets. For comparison, the spectra of a grossular and a spessartite are displayed in Figure 4. Their spectra reveal more absorption bands than those that may be due to the hydrogarnet substitution. Thus, most garnets, including andradite, have other kinds of incorporation of OH\(^-\) than just the substitution (SiO\(_4\))\(^2-\) \(\leftrightarrow\) (O\(_4\)H\(_4\))\(^2-\) (Rossman and Aines 1991). Unfortunately, a definite assignment to lattice positions does not exist. Incorporation of OH\(^-\) at the octahedral sites or even at the dodecahedral sites as a coupled substitution with ions of transition metals such as Fe is possible.

The reasons for the higher degree of complexity in some spectra are not obvious. Temperature of formation cannot be the only deciding factor for a high degree of multi-site OH\(^-\) substitution. Skarn andradite forms at higher temperatures than the garnet from serpentinites and their spectra show more resolved absorption features than the garnet from serpentinites. However, melanite from volcanic rock with low amounts of H\(_2\)O formed at even higher temperatures than the skarn andradite, but its spectra are comparatively simple. Also, high OH\(^-\) content cannot be the only reason for a higher degree of complexity in the spectra, because the hydroandradite occurring in a cavity in a basalt has the highest H\(_2\)O content of all the garnets of this study, yet its spectrum exhibits just the two absorption bands that are also observed in the spectra of the synthetic hydroandradite. On the other hand, the zoned melanite from San Benito (Fig. 5) shows increasing complexity in its spectrum moving from the yellow-brown rim to the deep brown-amber core. From other investigations on Ti-rich garnet, it is known that these darker areas have higher amounts of Ti and a slight Si deficiency. In Si deficient garnets, Ti, Fe, and Al are distributed over octahedral and tetrahedral sites. At low oxygen fugacities they may contain even Fe\(^{3+}\) (Kühberger et al. 1989). Therefore, their crystal chemistry is more complex and they have more and different kinds of defects. That is why the possibilities for the incorporation of OH\(^-\) increase, partially for the achievement of local sample balance. This multi-site OH\(^-\) substitution causes a higher degree of complexity in the IR spectra. Similarly, the skarn andradites are often zoned and may have a complex crystal chemistry. Therefore, one reason for an increased number of absorption features in their spectra is a greater complexity of the crystal chemistry.

In their experimental study, Huckenholz and Fehr (1982) have shown that the incorporation of hydroandradite, Ca\(_3\)Fe\(_2\)(OH)\(_{12}\), in andradite, Ca\(_3\)Fe\(_2\)Si\(_3\)O\(_{12}\), decreases distinctly with elevated temperature and less dis-
The spectra are scaled for 1 mm crystal thickness. More complex in the darker regions where the OH⁻ content is higher. The spectra are characterized by low amounts of H₂O (0.01±0.04 wt%). Andradite from skarns or melanite from veins in serpentinites have amounts of H₂O between those extremes.

ACKNOWLEDGMENTS

The authors thank G. Tippelt (Salzburg) for the hydroandradite synthesis and S. Ebner for typing the manuscript. We thank the Fulbright Commission and the Fonds zur Förderung der wissenschaftlichen Forschung in Vienna for financial support of GA through grant P10010GEO during his stay in Pasadena, and the National Science Foundation (U.S.A.) for support through grant no. EAR-9218980.

REFERENCES CITED

FIGURE 5. Zonation in melanite garnet from Santa Rita Peak, San Benito County, California (GRR1263). The IR spectrum is more complex in the darker regions where the OH⁻ content is higher. The spectra are scaled for 1 mm crystal thickness.