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Time evolution of pericline twin domains in alkali feldspars: A computer-simulation study
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ABSTRACT

A la~ge-s~ale computer. simulation of Al-Si ordering and the corresponding development
of a twm mIcrostructure m alkali feldspars is reported for the first time. In the simulation
the o~der-disorder transition is driven by long-range, strain-mediated interactions betwee~
ordenng atoms. These interactions are the result of an elastic accommodation of two
tetrahedra of different sizes, AIO. and SiO., in the feldspar framework structure. The
elementa~ step in changing the Al-Si distribution in this model is the interchange of two
Al and SI. atoms oc~upying neighboring corner-sharing tetrahedra. A combined Monte
Carl?-lattIce-r~laxatlOn method was used. An initially homogeneous disordered sample
was anne~led a~ a temperature, T, below the transition. The mesoscopic microstructure
at T < Tc IS dommated by the spontaneous strain of the triclinic structure. The formation
and subsequent coarsening of the pericline twins as developed in a thin slab parallel to
~he {OlQ} plane was observed; the orientations of twin domain boundaries deviate signif-

Icant~y. on a local scale from the macroscopic direction predicted by the compatibility
condItIon.

INTRODUCTION

Crystals undergoing phase transitions very often exhib-
it complicated domain patterns below the transition tem-
perature because of the degeneracy of the low-symmetry
phase and the local character of the transformation. A
simple example of such degeneracy is the easy-axis fer-
romagnet in which spontaneous magnetization can be
oriented, for example, up or down. In the case offerroe-
lastic phase transitions, in which the spontaneous strain
appears below the transition temperature, there exist sev-
eral orientational variants of the low-temperature phase.
The phase transitions in alkali feldspars considered in
this paper are order-disorder transitions accompanied by
large spontaneous strain. In such transitions the defor-
mation of a crystal is the consequence of ordering; the
elastic strain energy may account for about 50% of the
total excess Gibbs free energy (Salje et al. 1985a). The
process of ordering is local, and in some part of the crystal
any orientational variant can occur with the same prob-
ability. As a result of such orientational variants, the crys-
tal in the low-symmetry phase may consist of domains
of all possible orientational variants separated by twin
boundaries.

In this paper we focus on the development of the twin
microstructure and the corresponding transient patterns.
The direct observation of Al-Si ordering in alkali feld-
spars is hindered by the sluggish kinetics of the exchange
process (e.g., Putnis and McConnell 1980). However, such
kinetic processes can be easily simulated by computer
modeling. The results of such simulation can then be
compared with direct transmission electron microscopy

*
Former name: I. Masanskii.

0003-004 X/96/0708-0800$05 .00

(TEM) observations of partially ordered alkali feldspars.
It is the main aim of this paper to present such simulated
microstructures, some of which may appear counterin-
tuitive. We believe, however, that such microstructures
may be present in natural samples, and we hope that our
results will stimulate subsequent TEM studies. Prelimi-
nary results have recently been briefly discussed (Tsatskis
and Salje 1995).

This study is concerned with the time evolution ofmi-
crostructures using the Monte Carlo method. The quan-
tity "time" is defined in such methods in terms of the
number of attempts to change the atomic configuration
(e.g., Kehr and Binder 1987). The assessment of the cor-
relation between this internal time scale and true, natural
time is not trivial, however. In this paper we use only the
internal time (i.e., the Monte Carlo time). It might be
useful for the reader to equate this time, tMC, in an ap-
proximate manner with the natural time, t, by

t = tMcexp(E.lk1) (1)

where Ea is the activation energy of the ordering process.
The text is organized in the following way. In the re-

maining part of this section the framework structure, the
order-disorder phase transition, and the twin microstruc-
ture below the transition in alkali feldspars are briefly
reviewed. The general model for the numerical simula-
tion of the microstructure and its application to feldspars
are described in the next section. The computer modeling
itself and related problems, including the important issue
of the efficient calculation of the energy difference be-
tween two successive configurations of ordering Al and
Si atoms, are the focus of the third section. The last sec-
tion is a description of the results of the simulation and
their discussion.
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The crystal structure of alkali feldspars (chemical for-
mula MT40g, M = K, Na; T = AI, Si; T4 = AlSi3) is a
three-dimensional framework of corner-sharing T04 tet-
rahedra, with M atoms serving as spacers and occupying
large framework cavities. The basic structural unit of this
framework is a four-tetrahedron ring in which alternate
pairs of vertices point in opposite directions; such rings
form crankshaft-like chains running parallel to the a axis.
An AI04 tetrahedron is somewhat larger in comparison
with an Si04 tetrahedron; the ratio of mean AI-O and
Si-O bond lengths is about 1.08 (e.g., Putnis 1992). The
tetrahedra are relatively rigid, and the difference in size
between the two types of tetrahedra is accommodated
within the framework by changes in their relative posi-
tions without loss of the topology of the framework. K
and Na spacers also differ in size, contributing thereby to
the deformation of the framework. Details of the struc-
tural properties of alkali feldspars have been previously
described in great detail (Smith and Brown 1988; Ribbe
1994' Brown and Parsons 1994).

At'sufficiently high temperatures the Al and Si atoms
at Tl and T2 sites in the alkali feldspars are in a disor-
dered state. The sites T 1 and T2 are topologically dis-
tinct, so that some degree of order (described by the order
parameter Q,) is maintained at all temperatures; i.e., the
TI-T2 disordering is nonconvergent (Smith and Brown
1988; Harrison and Salje 1994; Carpenter and Salje 1994).
The order-disorder transition with the order parameter
Qoo relates to orderingof Al and Si on the T10 and TIm
sites (Salje 1985; Salje et al. 1985a). The order parameter
Qoo couples bilinearly with the spontaneous strain with
the components e4 and eo.

In the triclinic phase (Qoo *-
0), a characteristic twin

microstructure is observed in alkali feldspars (e.g., Eggle-
ton and Buseck 1980; Fitz Gerald and McLaren 1982;
McLaren 1984; Krause et al. 1986; Brown and Parsons
1994). Permissible orientations of twin boundaries can
be determined from the requirement that the atomic dis-
placements in the domain-wall plane are identical for both
adjacent domains. This requirement is expressed math-
ematically as the compatibility condition (Sapriel 1975):

~ (eH - e' )xx = 0lj l) I J
ij

where e'j and e;jdenote components of spontaneous strain
tensors for two domains, and x, is the coordinate of a
point in the domain-boundary plane. In the case under
consideration the tensors of the spontaneous strain have
the form

(
0 exy 0

) (
0 eo 0

)
e = -e' = exy 0 eyz = eo 0 e4

o eyz 0 0 e4 0

and Equation 2 has two solutions (Salje et al. 1985b): the
albite twin law

y=O

and the pericline twin law
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z = -(exJeyz)x = -(eofe4)x. (5)

The albite twin law (Eq. 4) defines a {OlQ} domain wall;
the pericline twin law (Eq. 5) corresponds to the domain
boundary orthogonal to the {OlQ} plane, with an orien-
tation that depends on the ratio of the components e4 and
eo of the spontaneous strain tensor. In the case of potas-
sium feldspar, for example, the pericline twin walls are
nearly perpendicular to the {001} plane.

(2)

THE MODEL FOR THE MICROSTRUCTURE
FORMATION

In this section the model used for the simulation of the
microstructure development is formulated in general
terms, and then its application to alkali feldspars is de-
scribed.

The underlying physical picture is an order-disorder
phase transition that generates spontaneous strain. The
ordering atoms of types A and B (here Al and Si) occupy
certain sets of positions in a perfect crystalline structure
or host matrix. The phase transition is, as usual, the result
of interaction between the ordering atoms. It is assumed
that the ordering atoms interact only elastically (through
the host matrix), i.e., indirectly, and that direct chemical
(short-range) and Coulombic interactions can be neglect-
ed (Heine 1994, personal communication). The origin of
the elastic interatomic interaction is the static distortion
of the host matrix by the ordering atoms. In the absence
of the ordering atoms the host matrix is an ideal crystal,
and all its atoms are in mechanical equilibrium (we do
not consider here the vibrations of the host atoms). When
the ordering atoms are inserted into the host matrix, each
ordering atom produces external stress with respect to the
host matrix shifting its atoms away from the initial equi-
librium positions. As a result, internal forces arise in the
host matrix that tend to return the host atoms to the
initial positions. A new state of equilibrium correspond-
ing to a given distribution of ordering atoms is then
reached in which the sum of external and internal forces
acting on each atom of the host matrix vanishes. In this
new equilibrium state the host atoms are displaced from
the initial positions, and the host matrix is distorted. Dif-
ferent configurations of ordering atoms correspond to dif-
ferent sets of displacements. In the simplest possible ap-
proximation the resulting displacement of a host atom is
a superposition of displacements caused by individual
ordering atoms. If we now consider two ordering atoms
in the otherwise empty host matrix, it is clear that one
atom "feels" the distortion of the host matrix created by
another atom, and this results in the effective long-range
elastic interaction between these two atoms.

More formally, if a system consists of two subsystems
that are not independent, i.e., the subsystems interact with
each other, then the Hamiltonian of this system, generally
speaking, should be a sum of three contributions. The
first two terms are the Hamiltonians of the isolated sub-
systems, and the third term represents the interaction be-
tween these subsystems. In our case the crystal consists

(3)

(4)
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of the ordering atoms and the host matrix. Therefore, the
Hamiltonian under consideration has the form

where Hhos!and Hordare Hamiltonians of the host matrix
and the ordering atoms, respectively, and Hint is the in-
teraction Hamiltonian. We now specify the form of all
three Hamiltonians. The Hamiltonian of the host matrix,
which is its potential energy, is a function of the static
displacements U of host atoms and describes the energy
increase when the host matrix is pulled out of the me-
chanical equilibrium; the latter corresponds to the energy
minimum. In the case of sufficiently small displacements
it is possible to expand the host-matrix energy in powers
of the displacements and to retain only the first nonzero
(quadratic) term. This is the harmonic approximation
usually used in the theory of lattice dynamics (e.g., Ash-
croft and Mermin 1976). The zero-order term, which does
not depend on displacements, is ignored. Further, be-
cause it is supposed that the ordering atoms do not in-
teract directly, their energy is configurationally indepen-
dent, and the second contribution to the Hamiltonian
(Eq. 6) HOrdis zero. Finally, the interaction Hamiltonian
describes the effect of forces f with which an ordering
atom acts on neighboring host atoms. We assume that
these forces have constant values, regardless of the posi-
tions of the host atoms; this means that the interaction
term is the linear function of displacements, because of
the relation

p =
_ aHint

n
au~

where f~ is the ith Cartesian component of a force acting
on the atom at site n of the host matrix, and u~ is the
corresponding displacement. Obviously, an ordering atom
of each kind has its own set of forces, and the resulting
force on the host matrix is therefore a function of the
configuration of the ordering atoms. A particular config-
uration of the ordering atoms is fully described by the set
of occupation numbers pr, ex= A, B,

o _
{

I, atom of type exat site I (8)PI - 0, otherwise

and I is the position of an ordering atom. The force f~
(Eq. 7) depends on the occupation numbers for the or-
dering atoms surrounding the atom at site n of the host
matrix and can be conveniently written in their terms as

f~ = ~ (F~~pt + F~~p?) = ~ F~pr. (9)
I 10

In this equation P:J is the ith Cartesian component of the
so-called Kanzaki force (Khachaturyan 1983) with which
the ordering atom of type exat site I acts on the host atom
at site n. Taking into account Equations 7 and 9, we fi-
nally get the full Hamiltonian of the system in the follow-
ing form:

H = l!ZuAu - uFp

(6) nm i) nl

(7)

where A is the Born-von Karman tensor of the host ma-
trix. It is seen that in the Hamiltonian (Eq. 10) the vari-
ables corresponding to the two subsystems (displace-
ments of the host atoms and occupation numbers of the
ordering atoms) are coupled bilinearly because of the in-
teraction term Hint. The result (Eq. 10) can also be ob-
tained by representing the internal energy of the host ma-
trix as a series in powers of the small displacements of
the host atoms and disregarding third-order and higher
terms (Krivoglaz 1969; Khachaturyan 1983). Similar
Hamiltonians have been used to study transient tweed
and twin patterns that arise in the process of ordering on
simple lattices caused by elastic interactions (Marais et
al. 1991; Salje and Parlin ski 1991; Sa1je 1992; Parlin ski
et al. 1993a, 1993b; Bratkovsky et al. 1994a, 1994b,
1994c). Unlike in the case of the harmonic approxima-
tion for the host matrix, here the first-order contribution
is nonzero because of applied external forces. The actual
positions of the ordering atoms are not specified in the
model; the Hamiltonian (Eq. 10) contains only the dis-
placements of the host atoms. In fact, this Hamiltonian
describes the host matrix subjected to external forces, and
these forces depend on a particular configuration of the
ordering atoms, which is described in terms of the oc-
cupation numbers.

Let us turn now to the quantitative description of the
effective long-range interaction between the ordering at-
oms starting from the Hamiltonian (Eq. 10). To find stat-
ic displacements corresponding to a given configuration
of the ordering atoms, it is necessary to minimize the
energy of the system [i.e., the Hamiltonian (Eq. 10)] with
respect to displacements Un for a given set of the occu-
pation numbers representing this configuration. The stat-
ic displacements us! are, therefore, solutions of the cou-
pled equations

and can be written as

(Us!)~= (A-1Fp)~ = ~ ~ ~ (A-')~mF~IPr. (12)
ml )

Decomposing an instantaneous displacement of the host
atom into two parts,

Un = u~t + ~u"'
(13)

substituting this sum into the initial Hamiltonian (Eq.
10), and using Equation 12, we arrive at the following
expreSSIOn:
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H = Ihp Vp + Ih~uA~u

= Ih~ ~ PtVi!P~ + 112~ ~ ~u~A~m~u{". (14)
kl afJ nm ij

The first term is the standard Hamiltonian used in the
phenomenological theory of ordering (de Fontaine 1979;
Ducastelle 1991), which contains only variables corre-
sponding to the ordering atoms (i.e., occupation num-
bers), whereas the second term describes harmonic vi-
brations of the host atoms around new (displaced due to
static external forces) equilibrium positions. The Born-
von Karman tensor A and, therefore, the phonon fre-
quencies are the same as in the case of the undistorted
host matrix; in the harmonic approximation static defor-
mations do not affect lattice vibrations. In this Hamil-
tonian the degrees of freedom corresponding to the two
subsystems are completely separated, and at finite tem-
peratures the thermal vibrations of the host atoms are
independent of the configuration of the ordering atoms.
The effective interaction V between the ordering atoms
in Equation 14 has the form

Vi! = _(PA-1F)i! = - ~ ~ (P)i~(A-1WmFj~k' (15)
nm ij

Using spin variables SI'

p~ = 112(1+ Si), pr = Ih(1 - Si) (16)

it is easy to show that the effective Hamiltonian for or-
dering in the grand canonical ensemble,

where /J-"and N" are the chemical potential and total num-
ber of atoms of type ex,respectively, is formally equiva-
lent to that of the Ising model (de Fontaine 1979; Du-
castelle 1991),

fi = - If2~ JlkSISk - ~ hisl (18)
Ik I

where the effective exchange integral Jlk and the magnetic
field hi are given by

Jlk = If4(2 VikB - V';'fA - V)tB) (19)

hi = Ih(/J-A - /J-B) - 1/4 ~ (V';1A - V)tB). (20)
k

Inserting Expression 15 for the effective interaction be-
tween the ordering atoms into Equation 19 yields

Jlk = If4[(FA- P)TA-l(FA - P)],k

= 1/4 ~ ~ (FA - P)}n(A-')~m(FA - PYmk' (21)
nm ij

This equation shows that it is the difference FA - P
between the Kanzaki forces for the two types of ordering
atoms which matters, and not the values of FA and FB.
It is important to note that the site-diagonal matrix ele-
ments Vi! and JII of the effective interatomic interaction
V and exchange integral J have nonzero values; in other
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(17)

words, there exists the effect of a self-interaction of the
ordering atoms. The reason for the self-interaction is easy
to understand: A single ordering atom placed into the
empty host matrix distorts the latter and thereby changes
the energy of the system. This energy change corresponds
precisely to the diagonal matrix element of the effective
interaction V This self-interaction is important in the
discussion that follows of the calculation of the energy
difference corresponding to the interchange of a pair of
atoms. It can be shown that in reciprocal space the effec-
tive spin interaction (Eq. 21) has the singularity at the
point k = 0 (e.g., de Fontaine 1979), similar to the sin-
gularity of the velocity of sound (Folk et al. 1976; Cowley
1976). This singularity is characteristic of the elastic in-
teractions: The k -- 0 limit of the Fourier transform of
the effective interaction depends on the direction along
which the point k = 0 is approached.

Applying the model described above to alkali feldspars,
we consider the host matrix as a regular network of in-
terconnected ideal a tetrahedra of the same size, with the
connection topology characteristic offeldspars. The alkali
atoms play the role of structural spacers. In other words,
we attribute K, Na, and a atoms to the host matrix. The
host matrix has monoclinic symmetry. The difference in
size between K and Na spacers is not very important for
this study and is ignored. In a further study, however,
one might want to analyze the effect of Al-Si ordering on
K-Na exsolution using a similar model. Here we substi-
tute K and Na by the same atom of average size. The
structure is to some extent idealized for computational
reasons, in the sense that the bases of all tetrahedra in a
horizontal four-tetrahedron ring lie in the {OlQ} plane,
and two of four tetrahedra are pointed strictly upwards
and two strictly downwards; i.e., in this structural model
no buckling of the rings occurs (Fig. 1). This idealization
results, in particular, in the value (3 = 120°, whereas the
experimental value is (3 = 116° (Megaw 1973; Kroll and
Ribbe 1987). Al and Si atoms are tetrahedrally coordi-
nated by a and constitute, according to our classification,
the ordering atoms. Starting to specify the model, we de-
fine the Kanzaki forces with which these two kinds of
atoms act on the host matrix. Application of the external
forces to the host matrix should lead to the difference in
average sizes of the Ala4 and Sia4 tetrahedra. Consider
first an isolated a tetrahedron. We define its size accord-
ing to the Sia4 tetrahedron, i.e., the presence of an Si
atom inside does not produce any distortion of the tet-
rahedron, and the corresponding Kanzaki forces are zero.
The Al atom inside the tetrahedron results in the ho-
mogeneous expansion of the tetrahedron with no change
in its shape. To achieve this effect, the Kanzaki forces
applied to the a atoms at the tetrahedron vertices are
directed outward along the lines connecting Al and a
atoms. No other forces exerted on the host matrix by the
ordering atoms are taken into account, which means that
the only sources of deformation of the K-Na-a host ma-
trix are Al atoms distributed over the centers of the a

--.---
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FIGURE 1. The unit cell of the simulated thin slab of alkali
feldspar-like structure defined with respect to the whole slab.
The simulated sample is obtained by the translation of the cell
in a and c directions. All tetrahedra are of the same size and
correspond to the host lattice before applying the Kanzaki forces.
Spheres represent alkali atoms.

tetrahedra. They increase the volume of the correspond-
ing tetrahedra, and the host matrix accommodates the
resulting stresses.

The next step is to select the necessary interatomic
bonds in the host matrix, i.e., to define nonzero matrix
elements of the Born-von Karman tensor A (Eq. 10). We
imagine the host matrix as consisting of balls (the host
atoms) and harmonic springs connecting these balls. We
can distinguish several sets of springs. Springs belonging
to the first set connect each two a atoms in an individual
tetrahedron and provide the elastic resistance of the tet-
rahedron to the Kanzaki forces produced by the Al atom.
The TO. tetrahedra are relatively rigid structural units in
the framework, and the spring constants of the intratetra-
hedron 0-0 bonds are considerably greater than those of
other bonds. The second set of springs relates to M-O
and M-M bonds. These bonds are responsible for the
stability of the framework and prevent structural collapse
around the alkali positions. In our model of the host ma-
trix there are (per M atom) three M-O springs in the
mirror plane connecting the M atom with the two OA
atoms, eight M-O springs between the M atom and its a
neighbors, OA (1), Oa, Oe, and aD' which are off the mir-
ror plane and above and below it, and three M-M springs
in the mirror plane. Finally, we add some of the 0-0

TABLE1. Spring constants for different groups of springs in
the host matrix

Spring

Intratetrahedron 0-0
Intratetrahedron 0-0 (surface tetrahedra)
Intertetrahedra 0-0
M-O and M-M

Spring
constant

100
110
50
10

bonds that connect, in addition to the common a atom,
two neighboring tetrahedra. The role of these intertetra-
hedrallinks is to enhance the strain-mediated repulsion
between two Al atoms occupying the comer-sharing tet-
rahedra and to stabilize the T -0- T bond angle. To achieve
the latter, additional bond-bending terms explicitly de-
pendent on the angle value are sometimes introduced into
the Hamiltonian (Sanders et al. 1984). We do not intend
to fit parameters of the model to experimental properties
of alkali feldspars, like elastic moduli, spontaneous strain
in the low-temperature phase, etc. Instead, our strategy
is to use the smallest parameter set possible, provided
that the correct ordered phase and reasonable directions
of the pericline domain walls are obtained. Following this
approach, only four spring constants are used, two for the
intratetrahedral and intertetrahedral 0-0 bonds and one
for M-O and M-M bonds. The fourth spring constant is
for the intratetrahedral 0-0 bonds in {DID} surface tet-
rahedra; the reason for this choice is discussed at the end
of the next section. The numerical values of the spring
constants are listed in Table 1.

Before we discuss details of the computer simulation,
let us briefly return to the analytical approach outlined
above. Strictly speaking, the ball-and-spring model for
the host matrix used in the simulations is not exactly
identical with the model described by the harmonic
Hamiltonian Hhost.The difference is the anharmonicity of
the ball-and-spring Hamiltonian, which appears simply
for geometrical reasons and has nothing to do with any
anharmonicity of interatomic springs. However, for small
displacements these anharmonic effects become negligi-
bly small, and the two models give the same results.

THE COMPUTER SIMULATION AND THE
ENERGY-DIFFERENCE PROBLEM

In the present work the kinetics of ordering is studied
using the Monte Carlo-lattice-relaxation method (Marais
et al. 1991; Bratkovsky et al. 1994a, 1994b, 1994c). The
elementary microscopic process that leads to the evolu-
tion of the state of order in a binary mixture is usually
assumed to be an interchange of two, not very distant (in
many cases nearest-neighbor only) A and B atoms, the
so-called Kawasaki spin-exchange dynamics. According
to the Metropolis "importance sampling" algorithm (see,
e.g., Binder and Stauffer 1987), this interchange takes place
with a transition probability that is a function of the en-
ergy difference
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tili = Ef - Ei (22)

where Ei and Ef are the energies of the configurations of
the ordering atoms before and after the interchange (ini-
tial and final configurations), respectively. To perform the
computer simulation at reasonable CPU times, it is nec-
essary to develop an efficient method of calculating the
energy difference (Eq. 22) between initial and final con-
figurations.

As was already discussed in the previous section, the
evolution in time of the system described by the Ham-
iltonian (Eq. 10) can be decomposed into two processes:
atomic ordering accompanied by the static distortion of
the host matrix and harmonic vibrations of the host at-
oms around the positions determined by this distortion.
The characteristic time scales of these two processes are
very different, so that we can average over the fast (pho-
non) degrees of freedom. It is difficult, if at all possible,
to calculate the interaction (Eq. 15 or 21) analytically or
numerically, especially in the case of structures with com-
plicated unit cells, because such a calculation would mean
an inversion of a very large (3N x 3N, where N is the
number of the host atoms in a simulated sample), sparse
matrix A. There exists, however, another approach to this
problem: One can rewrite the configurational part of the
Hamiltonian (Eq. 14) using Equation 12 for the static
displacements

H = lhp Vp = 1fm"Au" - u"Fp. (23)

This equation shows that instead of calculating the effec-
tive interatomic interaction, V, it is possible to calculate
numerically the static distortion (relaxation) of the host
matrix corresponding to a particular configuration of the
ordering atoms and then to compute the energy of this
configuration according to Equation 23. This procedure
is adopted in the simulation described here.

Two methods of calculating the host-matrix relaxation
are implemented in the computer code. The first method
is a numerical solution of the equation describing the
motion of an individual classical particle (a host atom in
the present case) under the influence of external forces
and a fictitious force of friction,

md2u/dt2 + 'Ydu/dt = f

where m is the atomic mass, t is time, 'Yis friction coef-
ficient, and f is the external force. This equation is solved
using molecular dynamics. The second method uses the
equation corresponding to the purely relaxational dy-
namics,

du/dt = f

and the Euler method is used for its numerical solution
(Press et al. 1986). The external force f in Equations 24
and 25 is the sum of the Kanzaki force F and the reac-
tion force of the deformed host matrix. The solutions of
these two equations tend to the static displacement u" as
t --+ 00.

The calculation of the static distortion of the host ma-

(24)

trix described here, and even more so our Monte Carlo
simulation, can be reasonably effective only when using
highly parallel computer architecture. We now mention
briefly some details concerning software and hardware
involved in the simulation. The simulation was per-
formed using the massively parallel computer AMT DAP
610 (AMT and DAP standing for "active memory tech-
nology" and "distributed array of processors," respec-
tively) located at the Department of Applied Mathemat-
ics and Theoretical Physics, University of Cambridge. The
AMT DAP 610 is a square 64 x 64 matrix of elementary
processors served by a host workstation. Each elementary
processor operates on its own data according to a com-
mon instruction stream that is broadcast from a central
processor. This hardware architecture and the high-level
language FORTRAN-PLUS make it possible to process
in parallel entire vectors and matrices. It is the natural
choice for simulating a sample that consists of n, x n2 x
n3 unit cells, where n, = n2 = 64. In the case of such
sample an individual elementary processor stores the in-
formation about n3 unit cells. The number of unit cells
in the third direction (n3) is arbitrary but restricted by
such factors as the calculation speed and the degree of
complexity of the unit cell. As a rule, the typical values
of n3 acceptable from this point of view are considerably
smaller than 64 even for simple lattices, and the simu-
lated sample unavoidably has the shape of a slab.

We now consider in detail the problem of calculating
the energy difference (Eq. 22) between the initial and final
configurations, which enters the Monte Carlo transition
probability and is the central quantity to be calculated in
the process of the simulation. Every elementary Monte
Carlo step (the interchange of two nearest-neighbor at-
oms in the case of the Kawasaki dynamics) involves, in
principle, two relaxations of the host matrix, one for each
of the two configurations. This is unsatisfactory because
the calculation of the lattice relaxation is very time-con-
suming and, in addition, we lose the important possibility
of interchanging atoms belonging to different pairs using
parallel procedure. In terms of the degree of paralleliza-
tion and the calculation speed, the acceptable solution
would be to have one host-matrix relaxation per simul-
taneous attempts to exchange atoms in each pair belong-
ing to some chosen set of nonoverlapping pairs of order-
ing atoms covering the whole simulated sample.
Surprisingly enough, this is possible. Let us consider, along
with the interchange of atoms of some selected pair de-
scribed above, another procedure that is the exchange of
these two atoms in the field of fixed host matrix relaxed
before with respect to the initial configuration. We refer
to the corresponding energy differences associated with
these two procedures for the pair of atoms at sites k and
I as tilik1 and filikh respectively. It can be shown that these
two energy differences are connected by a relation

tilik1 = filikl + 4JkI - 2Jkk - 2Ju (26)

where Jk1 is defined by Equation 19. In the case consid-
ered in this paper the Kanzaki forces corresponding to

(25)

---
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TABLE2. The contents of the computational unit cell defined
with respect to the whole slab

Species

Host 0 atoms
Host M atoms
Ordering T atoms
Springs
Kanzaki forces
Kawasaki pairs

Number

34
6

16
193
64
30

one species of atoms, say of B type, are equal to zero.
According to Equations 15 and 19, this means that

VAA = -4J, VAB= JlBB= O. (27)

In this case the combination of the interactions entering
Equation 26 and constituting the difference between the
correct and incorrect energy differences can be expressed
in terms of the energy E~ of a single A atom in the oth-
erwise empty host matrix,

and the similar energy E);/' for a pair of A atoms,

t=O

t=50

t=100

t=150

t=200

t=400

t=600

t=1000

FIGURE 2 (above and right). Sequences of snapshots of the
simulated twin microstructure corresponding to different an-
nealing times, t (indicated in Monte Carlo steps per ordering
atom). Only Al atoms distributed over TI positions of a single
crankshaft are shown. Different symbols (heavy and light dots)

E);/' = V);/' + 112V~t + 112V~. (29)

Finding the corresponding interactions from Equations
27-29 and inserting them into Equation 26 we finally
have

(30)

(31)OEkl = 2E~ + 2Et - E);/'.

Equations 30 and 31 mean that the energies (Eqs. 28 and
29) and, therefore, the difference OEklbetween t!..EkJand

Mkl can be calculated prior to the simulation and sub-
sequently used for the calculation of the correct energy
difference. The correction OEkl is quite easy to calculate
because for an infinite sample it is the same for all unit
cells and depends only on sublattice indices. In the case
of the finite sample used in the simulation this correction
has noticeable spatial dependence, especially very close
to the sample boundaries. In the simulation presented in
this paper we ignored this spatial variation and calculated
OEklfor one of the unit cells in the center of the sample.
Having reduced the calculation of t!..Eklto that of Mkh
we can process in parallel as many nonoverlapping pairs

(28)

t=O

t=50

t=100

t=150

t=200

t=400

t=600

t=1000

are used to distinguish between Tlo and Tim sites. The first
snapshot in each sequence corresponds to the initial, totally dis-
ordered AI-Si distribution. The annealing temperature increases
from a to c; the approximate values of the TIT, ratio are 0.3 (a),
0.5 (b), and 0.7 (c).
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of ordering atoms as necessary. The Monte Carlo step
consists then of the following substeps: (1) relaxing the
host matrix according to initial configuration; (2) choos-
ing a set of nonoverlapping pairs of ordering atoms; (3)
calculating fill for each pair; (4) calculating AE using
Equations 30 and 31; (5) making a Monte Carlo decision
concerning the interchange of atoms of each pair accord-
ing to the transition probability.

We now discuss briefly some remaining points impor-
tant for the simulation. First, in the case of the ferroelas-
tic phase transition described by a Hamiltonian that is a
function of atomic displacements, the use of periodic
boundary conditions is questionable because the spon-
taneous strain appears below the transition temperature
and leads to a macroscopic deformation of the sample.
For example, a monodomain sample in the ferroelastic
phase is homogeneously deformed; the spontaneous strain
tensor is constant throughout its volume. The displace-
ment vector is therefore a linear function of atomic co-
ordinates, which is incompatible with the periodic
boundary conditions. Two other types of boundary con-
ditions, free and clamped (see, for example, the discus-
sion in Heine et al. 1994), are possible in this case. In

t=O
c

t=50

t=100

t=150

t=200

t=400

t=600

t=lOOO

------
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our simulation we always used the free boundary condi-
tions. Second, the formal stability analysis of the host
matrix (all phonon frequencies must be positive for the
crystal structure to be stable) is not performed; however,
any instability is easily noticed and can be eliminated by
taking into account additional interatomic bonds. In par-
ticular, we found that the bonds between spacers (K, Na)
are important for the mechanical stability of the struc-
ture. The addition and removal of springs is straightfor-
ward because the computer code is quite flexible: As far
as the host matrix is concerned, it uses only a topology
of interatomic bonds in a unit cell of a crystal and allows
it to simulate arbitrary lattices. Third, for actual simu-
lation we used the ball-and-spring model for the host ma-
trix, which, as against the harmonic Hamiltonian Hho,t>
is, strictly speaking, anharmonic. However, the degree of
anharmonicity is small; its magnitude was controlled dur-
ing the simulation by monitoring the deviations from the
relation

(32)

where E.o" Eho,,, and Eiot are the energies corresponding
to the Hamiltonians H, Hho," and Hint' respectively, in
Equation 6 in the case u = ust. This relation holds for the
harmonic model (Eq. 10) and can be derived from Equa-
tions 10 and 12.

In the case of alkali feldspars the unit cell is quite com-
plicated: It contains four formula units, i.e., 52 atoms.
As a result, the simulated sample has the form of a very
thin slab (or film); the computational unit cell defined for
the whole slab (Fig. 1) contains slightly more than four
formula units (56 atoms; see Table 2). In our simulation
the slab has {01O} orientation, which allows the obser-
vation of only the pericline twins; the simulated slab
contains two crankshafts in the b direction (Fig. 1). The
presence of the {O1O} free surfaces in the sample, with
surface-to-volume ratio close to unity (the thin-slab ge-
ometry), creates additional problems. In the case of a
crystal with a free surface undergoing the order-disorder
phase transition the distribution of the ordering atoms
becomes a function of the distance from the surface. Gen-
erally, the closer the atomic layer is to the surface, the
more significant is the deviation of all crystal properties,
in particular, concentrations of different kinds of atoms,
from the bulk values. In the feldspar structure considered
here, it is energetically favorable for the Al atoms to gath-
er at the {01O} surfaces of the simulated slab because it
is easier for the slab to accommodate large AIO. tetra-
hedra at the surface rather than in the bulk (in our model
there are no Coulombic interactions that maintain local
charge neutrality). To avoid this effect and mimic the
properties of bulk alkali-feldspar crystal, we slightly in-
creased the strengths of the intratetrahedron bonds at the
{01O} surfaces. The criterion is the natural requirement
of equality of the energies of a single Al atom at the sur-
face and in the crystallographically equivalent layer in-
side the slab. This leads to a 10% increase in the spring
constants of the surface intra tetrahedron bonds (see
Table 1).
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t=O

t=50

t=100

t=150

t=400

t=600

t=lOOO

FIGURE 3. The same sequence of snapshots as in Figure 2
but for a different set of the host-matrix parameters.

RESULTS AND DISCUSSION

All simulations of the kinetics of microstructure for-
mation described in this paper started from an initially
disordered sample. More precisely, the simulations al-
ways started from a completely random Al-Si distribu-
tion, which is the hypothetical equilibrium configuration
at infinite temperature. The sample was then instantly
cooled across the transition temperature to a temperature
at which the disordered phase is unstable, and then it was
annealed at this temperature.

Sequences of snapshots of the twin microstructure in
the simulated sample annealed at various temperatures,
T, below the transition are shown in Figure 2. The values
of the ratio TlTc are approximate because it was difficult
to determine the transition temperature accurately; the
transition was smeared out because of finite-size effects.
Only Al atoms belonging to a single crankshaft and lo-
cated at Tl sites are shown in Figure 2, and different
symbols are used to represent Al atoms at Tlo and TIm
sites. The Al atoms at T2 positions and all Si and host
atoms are not shown in order to clearly distinguish the
two variants of the ordered phase. At early stages of the
ordering kinetics very fast local ordering and formation
of the pericline twin domains were found. At the begin-
ning, ordering and coarsening occurred simultaneously,

FIGURE4. Magnified view of the area in one of the snapshots
of Figure 2a (t = 1000) containing a solitary domain wall. Solid
and open circles show Tlo and TIm sites, respectively. In ad-
dition, stars mark Al atoms at T2 sites. A {OlO}projection of
the unit cell (Fig. 1) is also shown.

and no clear distinction between these two processes was
possible; after a short time, however, the local ordering
was almost complete, and the pattern consisted of a fine
mixture of well-defined regions in which the order pa-
rameter Qod acquires positive or negative values. At early
stages of annealing it was very difficult, and sometimes
impossible (see, in particular, Fig. 3 discussed below), to
observe the preferential orientation of the domain
boundaries. The patches of the ordered phase continued
to coarsen at later stages, and the preferential orientation
of the domain walls gradually appeared. At even later
stages, the system arranged itself into a pattern of rela-
tively wide stripes of peri cline twins aligned mainly along
the direction described by the pericline twin law (Eq. 5)
at a macroscopic level. The evolution of the sample at
this stage was very slow, making it problematic to mon-
itor further development of the stripe pattern. However,
even in this regime the domain walls experienced signif-
icant deviations from the soft direction at a local scale.
As the temperature increased and approached the tran-
sition point, the transitional areas between pericline twins
became more and more diffuse. This is in complete agree-
ment with the predictions of the continuum Landau-
Ginzburg theory, according to which the width of a do-
main wall increases with temperature and finally diverges
at the instability point (e.g., Salje 1993). The same se-
quence of snapshots for a slightly different set of the host-
matrix parameters is shown in Figure 3. The preferential
orientation for the domain boundaries is now quite dif-
ferent from what we observed in Figure 2. This change
of orientation is not surprising because the soft direction
of the pericline domain walls is sensitive to the ratio of
the two nonzero components of the spontaneous strain
tensor, as can be seen from Equation 5, which depends
in turn on the choice of model parameters. Finally, the
magnified picture of the configuration of Al atoms in the
area containing a single domain wall is shown in Figure
4. It illustrates the internal structure of the pericline do-
main boundaries obtained in the simulation. In this case
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the Al atoms at T2 sites are also indicated using different
symbols, so that the distribution of all Al atoms is shown.
Note that in some snapshots maximum deviations from
the soft direction and noticeably higher degrees of dis-
order occur close to the slab edges. These deviations Il1ay
be a consequence of the finite-size effects, ignoring the
spatial variation of the correction OEklto the energy dif-
ference (Eq. 30), or both. The obvious consistent ap-
proach to the elimination of the second possibility is to
calculate the above energy correction for the sufficient
number of unit cells, including those at the edges of the
sample, and to interpolate this function subsequently. This
procedure will be implemented in future simulations.

The main results of the simulation can be summarized
as follows. The pericline wall has only one symmetry con-
straint, namely, it must contain the crystallographic b axis.
Its actual orientation depends on the ratio e/ e4 of the
components of the spontaneous strain, i.e., the wall can
rotate around the b axis as the ratio e/ e4 changes. When
the crystal is quenched through Tc, the Al and Si atoms
order locally and build up local strain. The twin walls
accommodate this local strain, so that their orientation
corresponds to the lattice deformation on a length scale
of a few unit cells. This lattice deformation deviates sub-
stantially from that of the uniformly ordered sample. Lo-
cal segments of walls at the early stages are not well
aligned, therefore. With increasing degree of order, the
spontaneous strain becomes more uniform, and a global
alignment of walls is observed.

The second main result of the simulation is that peri-
cline walls are not smooth on an atomistic scale. In the
simulation we found that the wall thickness at tempera-
tures well below the transition temperature is always -1-
2 unit cells, i.e., approximately 10-15 A. This result seems
to support the idea that there is a minimum thickness for
a pericline wall when the temperature approaches abso-
lute zero. The origin of this minimum thickness appears
to be geometrical in nature, namely, that an atomistically
perfect pericline wall cannot be constructed along an ar-
bitrary direction containing the crystallographic b axis.
The orientation of the wall is determined by the macro-
scopic compatibility condition (Eq. 2), which contains no
direct information about the underlying crystal structure.
Only under exceptional circumstances do such walls co-
incide with crystallographic planes that are apt to form
structural twin planes. Generally, the orientation of the
twin walls does not correlate with the crystal structure,
leading to faceting of the wall. This faceting is then the
reason for the effective finite thickness of the twin wall.

The third result concerns the kinetic process of the Al-
Si ordering. In our simulation two processes can be iden-
tified. The first process leads to local ordering and the
formation of a fine kinetic microstructure. The second
process involves the coarsening of the stripe structure as
a result of the rearrangement of locally ordered patches.
There are no direct experimental observations related to
laboratory experiments that could be compared to our
results. Transient tweed microstructures have been found

in Al-Si disordering experiments in sodium feldspar,
however (Wruck et al. 1991). The tweed structures look
very similar to our simulated microstructures, bearing in
mind that the actual planes of observations are different
in the two cases. No such microstructures were found for
Tl-T2 (dis)ordering in sanidine (Salje and Kroll 1990).
To explore further the intriguing similarity between the
transient microstructures for Tlo-Tlm ordering and dis-
ordering we plan to perform computer simulations of the
disordering process.

Our ultimate goal is the simulation of ordering and
microstructure in bulk samples of minerals on a mesos-
copic length scale. To approach this goal, the modeling
of larger and, in particular, thicker samples is necessary.
An efficient enough computer code and, as a conse-
quence, sufficiently high simulation speed are also nec-
essary. Our computer code provided the simulation speed
of about 200 Monte Carlo steps per ordering atom per
hour in the simulation described here. In principle, this
speed should allow us to simulate up to 10-20 crank-
shafts in future work.
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