Orthopyroxene from the Serrade Magé meteorite: A structure-refinement procedure for a \textit{Pbca} phase coexisting with a \textit{C2/c} exsolved phase

M. CHIARA DOMENEGHETTI,1 VITTORIO TAZZOLI,2 TIZIANA BOFFA BALLARAN,2 AND G. MARIO MOLIN3

1CNR, Centro di Studio per la Cristallochimica e la Cristallografia, c/o Dip. di Scienze della Terra, Università di Pavia, via Abbiategrasso 209, 27100 Pavia, Italy
2Dipartimento di Scienze della Terra, Università di Pavia, via Abbiategrasso 209, 27100 Pavia, Italy
3Dipartimento di Mineralogia e Petrologia, Università di Padova, Corso Garibaldi 37, 35100 Padua, Italy

ABSTRACT

An X-ray structure-refinement procedure was developed to characterize orthopyroxene from the Serrade Magé meteorite. In the studied sample, the orthorhombic phase coexists with exsolution lamellae of \textit{C2/c} augite, parallel to (100), with \(a_{\text{opx}}^* = a_{\text{aug}}^* \), \(b_{\text{opx}}^* = c_{\text{aug}}^* \) and \(b_{\text{opx}}^* = b_{\text{aug}}^* \). Diffraction maxima of the monoclinic phase overlap those of the orthorhombic phase with \(h + l = 2n \), yielding violations of the extinction conditions for space group \textit{Pbca} and simulating the lower symmetry space group \textit{P2\textsubscript{1}ca}. Structural parameters of the \textit{Pbca} phase together with the WC\textsubscript{px} parameter, which expresses the fraction of the \textit{C2/c} phase present, were refined first. \(Fe \) values were calculated using the equation \(Fe = y(1 - WC_{\text{px}})Fe^{*}_{\text{px}} + WC_{\text{px}}Fe^{*}_{\text{aug}} \) with \(Fe^{*}_{\text{px}} \) values taken from the structure refinement of an augite. Observed \(Fo \) values were then corrected by subtracting the calculated contribution of the monoclinic phase with use of the equation \(F_{\text{orr}} = \sqrt{(1 - WC_{\text{px}})F^{2}_{\text{px}} + WC_{\text{px}}F^{2}_{\text{aug}}} \) and used for a further refinement of the orthorhombic phase. The final residual indices, \(R_{\text{obs}} \), were 2.11 and 1.78% for two crystals with different augite contents. This refinement procedure confirms \textit{Pbca} as the correct space group and provides more accurate structural parameters for the Serrade Magé orthopyroxene.

INTRODUCTION

In the orthopyroxene from the Serrade Magé meteorite, the presence of reflections \(0kl \) with \(k = 2n + 1 \), in violation of the systematic absence for the \textit{b}-glide plane in the \textit{Pbca} space group, had led to the suggestion of the lower symmetry space group \textit{P2\textsubscript{1}ca} (Harlow et al. 1979), as also proposed for other lunar and terrestrial pyroxenes (Smyth 1974, 1975; Steele 1975; Luo et al. 1992). However, the results of the refinements of two Serrade Magé orthopyroxene crystals according to \textit{P2\textsubscript{1}ca} (Domeneghetti et al. 1995b) did not support the assumption of this lower symmetry space group. Violations of extinction conditions for \textit{Pbca} symmetry, and the monoclinic Laue symmetry \(2/m \) (rather than orthorhombic symmetry \(mmm \)) exhibited by the reflections, were explained by the presence of an exsolved \textit{C2/c} augite phase, as already proposed by Sasaki et al. (1984). TEM observations by Domeneghetti et al. (1995b) of microstructures of Serra de Magé orthopyroxene showed augite lamellae, parallel to (100), thicker than 500 Å, and irregularly spaced within the orthopyroxene matrix \(a_{\text{opx}}^* = a_{\text{aug}}^* \), \(b_{\text{opx}}^* = c_{\text{aug}}^* \) and \(b_{\text{opx}}^* = b_{\text{aug}}^* \). With this orientation of the monoclinic cell with respect to the orthorhombic cell, all diffraction effects of monoclinic \textit{C2/c} augite are superimposed on those of the \textit{Pbca} phase with \(h + l = 2n \), thus explaining the monoclinic-like equivalence of the reflections. An estimate of the amount of the monoclinic phase present was obtained from the ratio \(100(F_{\text{e}})^{2}/(2F_{\text{e}})^{2} \), where \(F_{\text{e}} \) represents the observed structure factors of the forbidden reflections and \(F_{\text{e}} \) represents the calculated structure factors of the corresponding reflections in the \textit{C2/c} phase. The latter are from a refinement of an augite sample with about the same composition as the (100) lamellae. The proportion of augite determined for the two crystals was about 4 and 12%, showing a nonhomogeneous distribution of the exsolved phase in different orthopyroxene crystals.

To obtain a more accurate estimate of the exsolved augite and a more accurate structural determination of the orthopyroxene host we designed a procedure for refining the \textit{Pbca} phase in the presence of a \textit{C2/c} exsolved phase. We present here the strategy and the results of this refinement procedure applied to the same orthopyroxene samples studied by Domeneghetti et al. (1995b).

EXPERIMENTAL METHODS

Structure-refinement procedures

We used for this study the same set of X-ray single-crystal diffraction data collected by Domeneghetti et al. (1995b) for two Serra de Magé samples, Opx SDM N.13, an untreated crystal, and Opx SDM N.7, disordered by heating at 900 °C for 47 h, 40 min. The intensity data
were obtained using a Philips PW 1100 four-circle automated diffractometer and graphite-monochromatized MoKα radiation (λ = 0.71073 Å). Net X-ray diffraction intensities were determined by measuring step-scan profiles and analyzing them by the Lehmann and Larsen (1974) ε/ι method as modified by Blessing et al. (1974). The reflections hk0, hkl, hkl, and hkl were measured up to θ ≥ 30° in the ω-scan mode. The intensities were corrected for absorption using the semiempirical method of North et al. (1968). The cell dimensions were determined using a locally improved version (Cannillo et al. 1983) of the Philips LAT routine and are reported in Table 1. The values of equivalent pairs in 2/m Laue symmetry (hkl and hkl, hkl and hkl) were averaged. We considered as extinct those reflections that are extinct in the Pbca space group and are either out of register with nodes of the monoclinic net or in register with nodes absent for the extinction conditions in the C2/c space group. Considering that all monoclinic reflections overlap orthorhombic reflections with h + l = 2n, the indices of the extinct reflections can be found by taking into account the extinction conditions in both Pbca and C2/c space groups, together with the transformation matrix hklPbca → hklC2/c: ½0−½l, 010, 001. The resulting extinction conditions are as follows: h0l with l = 2n + 1, hkl0 with h = 2n + 1, 0kl with k = 2n + 1 and l = 2n + 1, 0kl with k = 2n + 1 and l = 4n. This agrees with the presence of reflections 0kl with k = 2n + 1 and l = 4n + 2, which are forbidden in the Pbca space group and occur in Serra de Magé orthopyroxene. Reflections with I ≥ 3σI were considered as observed and used with unit weights in the structure refinement, which was performed without chemical constraints using a locally modified version of the least-squares program ORFLS (Busing et al. 1962). The program allows the assignment of two scattering curves, f1 and f2, to each site and refinement of the occupancy factors X(f) with the constraint X(f1) + X(f2) = 1. The sum X(f1)N1 + X(f2)N2, where N1 and N2 are the atomic numbers referring to f1 and f2, provides the mean atomic number at the site. The atomic scattering curves are from the International Tables for X-ray Crystallography (Ibers and Hamilton 1974) and from Tokonami (1965). The ionization states used were 2.0+ for Si, Mg, and Fe and 1.5− for O.

The refinement was performed in two steps. First, starting from the values obtained in the Pbca refinement by Domenechetti et al. (1995b), atomic positions, anisotropic displacement parameters, and occupancy factors at M1 and M2 sites of the orthorhombic phase were refined simultaneously with the fraction Wcpx of the C2/c exsolved phase. In this procedure, the F̅ values were calculated by summing the contribution of both phases with use of the equation F̅ = √(1 − Wcpx)|F̅1| + Wcpx|F̅2| for the equivalent pairs in mmm Laue symmetry (hkl and hkl). The equivalent pairs were then averaged and used for a further refinement of the Pbca phase. For the two crystals the refinement converged to residual indices Robs of 2.11% (for 851 observed reflections) and 1.78% (for 897 observed reflections), respectively.

An attempt to refine separately the monoclinic phase was unsatisfactory because its low concentration resulted in weak intensity of the augite reflections. For the same reason, changes in the augite composition (even 10% in Ca and Fe content) do not significantly affect the values of F̅cpx or the final result of the refinement of the Pbca phase.

Selected interatomic distances and angles, and mean atomic numbers at M1 and M2 sites, are reported in Table 2. The final positional and displacement parameters are reported in Table 3. The observed and calculated structure factors (Tables 4 and 5) have been deposited.1

1 A copy of Tables 4 and 5 may be ordered as Document AM-96-618 from the Business Office, Mineralogical Society of America, 1015 Eighteenth Street NW, Suite 601, Washington, DC 20036. Please remit $5.00 in advance for the microfiche.
TABLE 3. Atomic positional parameters and displacement parameters

<table>
<thead>
<tr>
<th></th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
<th>(U_{11})</th>
<th>(U_{22})</th>
<th>(U_{33})</th>
<th>(U_{12})</th>
<th>(U_{13})</th>
<th>(U_{23})</th>
<th>(B_{eq}) ((\AA^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIA</td>
<td>0.2283(3)</td>
<td>0.6595(8)</td>
<td>0.5514(1)</td>
<td>0.0066(3)</td>
<td>0.0063(3)</td>
<td>0.0034(3)</td>
<td>-0.0006(3)</td>
<td>-0.0004(2)</td>
<td>0.0003(3)</td>
<td>0.43</td>
</tr>
<tr>
<td>SIB</td>
<td>0.4740(1)</td>
<td>0.3350(6)</td>
<td>0.7850(1)</td>
<td>0.0064(3)</td>
<td>0.0058(3)</td>
<td>0.0031(3)</td>
<td>0.0002(3)</td>
<td>-0.0004(2)</td>
<td>-0.0001(3)</td>
<td>0.40</td>
</tr>
<tr>
<td>O1A</td>
<td>0.3161(1)</td>
<td>0.8380(2)</td>
<td>0.0440(3)</td>
<td>0.0077(8)</td>
<td>0.0086(8)</td>
<td>0.0043(7)</td>
<td>-0.0002(7)</td>
<td>0.0003(7)</td>
<td>0.001(7)</td>
<td>0.54</td>
</tr>
<tr>
<td>O1B</td>
<td>0.5625(1)</td>
<td>0.3370(2)</td>
<td>0.7062(7)</td>
<td>0.0057(7)</td>
<td>0.0088(6)</td>
<td>0.0045(7)</td>
<td>-0.0017(7)</td>
<td>0.0018(7)</td>
<td>0.0017(7)</td>
<td>0.50</td>
</tr>
<tr>
<td>O2A</td>
<td>0.3111(1)</td>
<td>0.5003(2)</td>
<td>0.7896(8)</td>
<td>0.0098(8)</td>
<td>0.0081(8)</td>
<td>0.0006(7)</td>
<td>-0.0016(7)</td>
<td>-0.0028(7)</td>
<td>0.0004(7)</td>
<td>0.65</td>
</tr>
<tr>
<td>O2B</td>
<td>0.434(1)</td>
<td>0.4622(2)</td>
<td>0.7874(6)</td>
<td>0.0012(8)</td>
<td>0.0081(8)</td>
<td>0.0017(8)</td>
<td>0.0004(7)</td>
<td>0.0017(7)</td>
<td>0.0017(7)</td>
<td>0.71</td>
</tr>
<tr>
<td>O3A</td>
<td>0.1976(1)</td>
<td>0.7586(2)</td>
<td>0.2843(4)</td>
<td>0.0044(8)</td>
<td>0.0124(9)</td>
<td>0.0016(8)</td>
<td>0.0003(7)</td>
<td>0.0003(7)</td>
<td>0.0003(7)</td>
<td>0.74</td>
</tr>
<tr>
<td>O3B</td>
<td>0.5473(1)</td>
<td>0.2022(2)</td>
<td>0.3532(4)</td>
<td>0.0010(8)</td>
<td>0.0113(8)</td>
<td>0.0027(9)</td>
<td>-0.0009(8)</td>
<td>-0.0009(8)</td>
<td>-0.0009(8)</td>
<td>0.75</td>
</tr>
<tr>
<td>M1</td>
<td>0.3753(4)</td>
<td>0.6546(8)</td>
<td>0.8743(1)</td>
<td>0.0084(4)</td>
<td>0.0071(4)</td>
<td>0.0035(3)</td>
<td>-0.0001(3)</td>
<td>0.0006(3)</td>
<td>0.0003(3)</td>
<td>0.50</td>
</tr>
<tr>
<td>M2</td>
<td>0.3779(5)</td>
<td>0.4832(5)</td>
<td>0.3679(1)</td>
<td>0.0103(2)</td>
<td>0.0096(2)</td>
<td>0.0042(2)</td>
<td>-0.0012(2)</td>
<td>-0.0022(2)</td>
<td>0.0002(2)</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Note: Standard deviations are in parentheses.

A CAMECA-CAMEBAX electron microprobe, operating with a focused beam (~1 \(\mu m\)) in wavelength-dispersive (WDS) mode at 15 kV and 15 nA sample current, was used. The counting time for peak and background was 20 s. Synthetic end-member mineral standards were used (Domeneghetti et al. 1995b). X-ray counts were converted to oxide weight percentages using the ZAF correction program. Precision of the analyses is ±1% for major elements and 3–5% for minor elements.

Ca concentration profiles along directions perpendicular to exsolved lamellae in the orthopyroxene grains allowed us to select Ca-poor areas suitable for spot analyses. The chemical composition reported in Table 6 represents the average of 15 spot analyses in which the oxide total was 100 ± 1%. The Fe\(^{3+}\) content was zero, consistent with the highly reduced state of the meteorite; total cation content was 4.000 ± 0.005 atoms on the basis of six O atoms; the charge balance \(3\text{Al} + \text{Na} - 3\text{Ti} - 3\text{Cr}\), where the elements are expressed in terms of atoms per formula unit (apfu), was ±0.005. The mean Ca content measured was 0.036 apfu (\(\sigma = 0.005\)), with a minimum value of 0.029.

Determination of the site population

Site populations were calculated using the results of both the structure refinements and microprobe analyses. The best value of the atomic fraction \(X_i\) for each element \(i\) at site \(j\) was determined with a minimization procedure using the program MINUIT (James and Ross 1975).

The quantity minimized was \(M = \sum[R_w F_i]^2 = \sum[(Q_{calc} - Q_{obs})/\sigma(Q_{obs})]^2\), i.e., the weighted sum of the squares of the residuals \((R)\) between the observed and the calculated values of chemical and structural \((Q)\) parameters, with weights \((w)\) inversely proportional to the relevant standard deviations, \(\sigma\). The chemical parameters considered...
Domeneghetti et al.: Orthopyroxene from Serra de Magé

Table 6. Electron microprobe analysis of Serra de Magé orthopyroxene

<table>
<thead>
<tr>
<th>Oxide (wt%)</th>
<th>apfu (based on 60 atoms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>52.42(30) Si</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.36(6) Al</td>
</tr>
<tr>
<td>FeO</td>
<td>24.95(22) Fe⁺⁺</td>
</tr>
<tr>
<td>MgO</td>
<td>20.07(21) Mg</td>
</tr>
<tr>
<td>MnO</td>
<td>0.89(8) Mn</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.15(3) Ti</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.15(4) Cr</td>
</tr>
<tr>
<td>CaO</td>
<td>0.88(13) Ca</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.01(1) Na</td>
</tr>
<tr>
<td>Sum</td>
<td>99.80(40) Sum</td>
</tr>
</tbody>
</table>

Note: Standard deviations are in parentheses.

were the atomic fractions of Si, Al, Ti, Cr, Mg, Fe⁺⁺, Mn, Ca, and Na. For each element, the residuals \(R_i - R_o \) are the difference between the sum of its atomic fraction at the structural sites and its total amount, in apfu, determined by the microprobe analysis. The structural parameters are the mean atomic numbers (m.a.n.) at the M1 and M2 sites and the mean bond distances M1-O and SiB-O, the experimental values of which were provided by the structure refinement. The relevant residuals \(R_{10} - R_{11} \) were then calculated as follows:

\[
\begin{align*}
R_{10} &= (12X_{M1}^M + 26X_{Fe^{2+}}^M + 26X_{Fe^{3+}}^M + 13X_{[Al]}^M) \\
&+ 22X_{Ti}^M + 25X_{Mn}^M + 24X_{Cr}^M - \text{m.a.n.(M1)} \\
R_{11} &= [2.078X_{Mg}^M + 2.135X_{Fe^{2+}} + 2.030X_{Fe^{3+}} \\
&+ 1.929X_{[Al]}^M + 1.990X_{Ti}^M + 2.010X_{Cr}^M \\
&+ 2.173X_{Mn}^M + 0.006(X_{Fe^{2+}} - X_{Fe^{3+}})] \\
&- (M1-O)_{obs} \\
R_{12} &= (12X_{M1}^M + 26X_{Fe^{2+}} + 20X_{Ca}^M) \\
&+ 25X_{Mn}^M + 11X_{Cr}^M - \text{m.a.n.(M2)} \\
R_{13} &= [(X_{[Al]}^M + 15.423)/9.4187] - (\text{SiB-O})_{obs}
\end{align*}
\]

In Equations 1 and 3 the coefficients of the atomic fractions \(X_i \) are the atomic numbers of the elements that enter the sites M1 and M2, respectively. In Equation 2 the coefficients of \(X_{M1}^M \) and \(X_{Fe^{2+}}^M \) are the mean bond distances from enstatite and ferrosilite, and the coefficients of the other atomic fractions represent the cation-O mean bond distances for Fe⁺⁺, [Al], Ti, Cr, and Mn, respectively, as currently adopted for the M1 site in pyroxenes. The last term of the equation introduces an empirical correction for the influence of the M2-site population on the size of the M1 polyhedron, as in Equation 5 of Domeneghetti et al. (1995a). In Equation 4 the numerical values come from Equation 18 of Domeneghetti et al. (1995a).

In the minimization procedure the following constraints were adopted: (1) Fe⁺⁺ was considered to be equal to zero, as in the microprobe analysis; (2) [Al], Ti, and Cr were considered to be fully ordered at the M1 site (Domeneghetti et al. 1985; Tazzoli and Domeneghetti 1987), Ca fully ordered at the M2 site, Mg and Fe⁺⁺ distributed between the M1 and M2 sites, and Mn partitioned in the same way as Fe⁺⁺ (Hawthorne and Ito 1978); (3) all the structural sites were considered to be fully occupied; (4) the charge balance in isomorphous replacements was constrained by \(X_{Fe^{2+}} + 2X_{Fe^{3+}} + X_{Cr} = X_{Na} + X_{[Al]} \).

The standard deviations used for weighting the residuals \(R_i - R_o \) came directly from the microprobe analysis, and those for the residuals \(R_{10} - R_{13} \) from the structure refinement. The standard deviations of the residuals \(R_{11} \) and \(R_{13} \) include both the error of the observed values, given by the refinement, and the error of the calculated values, which were estimated to be 0.01 and 0.001 for (SiB-O) and (M1-O), respectively, according to the results of Domeneghetti et al. (1995a).

The calculated site populations for samples SDM N.13 and SDM N.7 are reported in Table 7.

Discussion

The validity of the refinement procedure adopted in this work for the two Serra de Magé orthopyroxene crystals is supported by the final values of the residual indices \(R_{obs} \), which must be compared with those obtained for the same samples by Domeneghetti et al. (1995b) using the traditional refinement in space group \(Pbca \). The \(R_{obs} \) indices decreased from 2.81 to 2.11% for Opx SDM N.13 and from 5.17 to 1.78% for Opx SDM N.7, which contains a higher fraction of the exsolved phase. The standard deviations of the atomic positional parameters, and consequently those of the interatomic distances, show a comparable improvement. In particular, for Opx SDM N.7 they are reduced to about one-third of the previous values. The displacement parameters also exhibit a general decrease, as is indicated by the new values of \(B_{eq} \).

The results of this work demonstrate that the correct space group for Serra de Magé orthopyroxene is indeed \(Pbca \) and that the violations of the extinction conditions...
for \textit{Pbca} space group are due to the exsolved augite lamellae. The adoption of a lower symmetry space group must definitely be rejected for this orthopyroxene and must be questioned also for the other reported \textit{P2\textsubscript{1}ca} orthopyroxenes from lunar and terrestrial occurrences. For these samples, if single crystals are available, the true symmetry could be verified using the method described in this paper.

The refinement procedure adopted here allowed us to determine the fraction of the exsolved \textit{C2/c} phase, 2.80 and 11.27\% for Opx SDM N.13 and Opx SDM N.7, respectively, in good agreement with the approximate values, 4 and 12\%, calculated from the intensity of the “forbidden reflections” in \textit{Pbca} space group (Domeneghetti et al. 1995b). Our refinement provided accurate values of the distribution coefficient \(K_o\) for both samples with use of a more correct determination of M1 and M2 site populations. The \(K_o\) values of 0.034 and 0.180 for Opx SDM N.13 and Opx SDM N.7, respectively, are lower in comparison with those of 0.042 and 0.205 obtained from the site population previously calculated by Domeneghetti et al. (1995b). This indicates that, if the diffraction effects of the exsolved phase are not subtracted from those of the host, the degree of order measured for the orthopyroxene can be lower than the actual value, leading to significant errors in the calculation of the cooling rates.

ACKNOWLEDGMENTS

Financial support was provided by the CNR (Centro di Studio per la Cristallografia, Pavia, and Centro di Studio sui Problemi dell’Orogeno delle Alpi Orientali, Padua). The authors are grateful to F. Mazzi for his helpful suggestions and to M. Carpenter for his informal review of the manuscript.

REFERENCES CITED

Hawthorne, F.C., and Ito, J. (1978) Refinement of the crystal structures of \([\text{Mg}_{0.65}\text{Fe}_{0.65}]\text{SiO}_4\). Acta Crystallographica, B34, 891–893.

Steele, J.M. (1975) Mineralogy of lunar norite 78235: Second lunar occurrence of \(P2\textsubscript{1}ca\) pyroxene from Apollo 17 soils. American Mineralogist, 60, 1086–1091.

MANUSCRIPT RECEIVED AUGUST 24, 1995

MANUSCRIPT ACCEPTED MARCH 21, 1996