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Mica p()lytypism: Identification and origin

HIROSHI TAKEDA
Mineralogical Institute, Faculty of Science, University of Tokyo, Hongo, Tokyo 113, Japan

MALCOLM Ross
u.s. Geological Survey, National Center 959, Reston, Virginia 22092, U.S.A.

ABSTRACT

Practical methods for identification of the complex mica polytypes have been developed
by introducing a special function characteristic of their layer stacking sequences that is
displayed in their X-ray diffraction patterns. This periodic intensity distribution (PID)
function is the Fourier transform of a stacking sequence. The X-ray diffraction patterns
of a polytype are expressed by the PID function modified by the Fourier transform of the
unit mica layer. The PID function is used to determine the stacking sequences of several
polytypes, and the mechanism by which the most frequently observed polytypes form is
discussed. The axial settings of mica polytypes are defined in order to compute the PID
functions in terms of the layer stacking sequences. Practical methods of obtaining observed
PID functions are given together with tables of the PID functions of the three basic po-
lytype series. The common polytypes have the basic sequences such as 1M, 3T, and 2M.
and are modified by a stacking fault, but the subsequent sequences are so arranged that
the original direction of stacking is recovered as readily as possible.

INTRODUCTION

Until 1966 only the layer stacking sequences of the 1M,
2M., 2M2, and 3T mica polytypes (Sn1ith and Yoder,
1956) were known. The systematic de:rivation of mica
polytypes and their X-ray diffraction patterns (Takeda,
1967) enabled us to describe the layer stacking sequences
of more than ten complex mica polytyp(~S having unit cell
dimensions from 40 A to more than 200 A in the c*
stacking direction (Ross et aI., 1966). Subsequent X-ray
and electron diffraction analysis and transmission elec-
tron microscopy investigations (for example, Rieder, 1970;
Pandey et aI., 1982; Rule et aI., 1987; Baronnet and Kang,
1989) have shown that mica polytypes possess some of
the most complex inorganic structures known.

One of the difficulties in determining the layer stacking
sequence of micas by X-ray diffraction techniques is the
relatively large size of the unit layer in comparison with
that of silicon carbide. A characteristic feature of X-ray
diffraction patterns of mica polytypes is a periodicity of
the intensity distribution along reciprocal lattice rows
parallel to c* of the crystal. However~, such periodicity
can be more easily recognized after elimination of the
modulation by the Fourier transform of the complex unit
layer. In general, the periodicity is observed when the
crystal structure involves only displace:ments of identical
unit layers. The outline of preliminary theory and an ex-
ample of its application for this periodic intensity distri-
bution (PID) function is given in a pre~vious manuscript
(Takeda, 1967).

Another difficulty is the frequent presence of twinning.

0003--004X/95/0708--0715$02.00

Those apparent polytypes that have unit cell repeats in
multiples of three have often been mistaken as complex
mica polytypes. An analysis of simple 1M and 2M. twin-
ning has been developed by Sadanaga and Takeuchi
(1961). More complex twinning, consisting of more than
three individuals of one kind of polytype or the coales-
cence of two or more kinds of polytypes, has been dis-
cussed by Rieder (1970). A thorough twin analysis should
be completed before the application of the PID function.

General representations of polytypism are given in the
IUCr report (Guinier et aI., 1984), and applications of
the aD-theory are mentioned by Dornberger-Schiffet al.
(1982) and Weiss and Wiewiora (1986). To represent the
stacking sequences of mica polytypes, three different
symbolisms have been proposed (Zvyagin, 1960; Ross et
aI., 1966; Takeda and Sadanaga, 1969). A method of de-
riving the space groups in terms of one of these symbol-
isms, together with a method of generating all possible
stacking sequences for a given layer number, was given
previously by Takeda (1971). To derive the PID function,
the symbols representing interlayer rotations must be
transformed to symbols that give layer positions for a
particular set of crystallographic axes. A procedure to cal-
culate the PID functions is given here and is compared
with observed PID values of polytypes frequently found
in nature. Because the number of possible polytypes in-
creases very rapidly for micas with larger layer repeats, a
major limitation of the application of this method rests
on the availability of fast computers (Mogami et aI., 1978).

The three basic series of complex mica polytypes were
discovered through the application of the PID function
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Atoms x y z Rotation Stacking Elements of
around c* operators stacking operatorst

Y2Mo 0 Y3 Y2 (0) (r) (x" y,)
OH 0 0 Y2 - to
Oa(apical) % Y3 Y2 - to 0 0 -1,0
Mt % Y3 Y2 - to - dtc* 60 1 1, 1
Ob(basal) Y2 + va/6tan a 0 Y2 - to - %dtc* 120 2 -1,1
K 0 0 0 180 3 1,0

240 4( - 2) -1, -1
Note: tan a = 4y12.y(dt/b)2 - 1h2' c* = 1/(c sin (j), docos t/; = 300 5(-1) 1, -1

by(do/b)2 - %7' to = docos tJ;c*.
t The elements are expressed in the unit of Y3a, Y3b.
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TABLE1. Atomic coordinates in the hexagonal setting of a mica
unit layer with symmetry 1P31m

TABLE2. Components of displacement vectors in the orthogonal
coordinate for the six stacking operators

(Ross et aI., 1966); this work demonstrated that the po-
lytypism of micas resembles that found in the silicon car-
bide polytypic series. This resemblance suggests that the-
ories of polytype formation proposed silicon carbide may
also be applied to micas. Baronnet (1975) showed a re-
lationship between growth spirals and the formation of
complex mica polytypes. Application of the faulted ma-
trix model to the growth of mica polytypes was under-
taken by Baronnet et ai. (1981) and Pandey et ai. (1982).
Baronnet and Kang (1989) reviewed the crystal growth
aspects of mica polytypism with emphasis on the rela-
tionships between the growth mechanisms of the basal
faces and ordering of the unit modules within the mica
structure.

MODELS OF THE MICA UNIT LAYER

The conventional unit layer that is used to derive mica
polytypes is one layer of the 1M monoclinic mica (Smith
and Yoder, 1956). The symmetry of this layer is best
described by one of the 80 layer-group symbols (diper-
iodic group or two-translational three-dimensional group,
1C2/m after Niggli, personal communication) (Wood,
1964). Even though the refinements of the 2M. (Burnham
and Radoslovich, 1964) and 3T (Giiven and Burnham,
1967) moscovite and other structures in subgroup sym-
metries have shown that the true symmetry of the unit
layer is lower than 1C2/m, this idealized 1C2/m is real-
ized to a very good approximation in all mica polytypes
for the purpose of deriving their Fourier transforms.

To describe a mica polytype without rotations of the
unit layers, Sadanaga and Takeda (1968) and Takeda and
Sadanaga (1969) chose a layer designated as the TS unit
layer, which is composed of a plane of alkali ions in the
center and octahedral cations on both sides (see Fig. 1 of
Takeda and Sadanaga, 1969). The choice of the TS unit
layer explains the symmetry of diffraction patterns of mi-
cas better than the conventional unit layer. It is recog-
nized that the layer-group symmetry is Ipj1m, which is
higher symmetry than 1C2/m. This layer, as described
above, having layer-group symmetry 1Pj1 m, is desig-
nated the D layer (ditrigonal layer). A model of the D
layer can be predicted from the unit cell dimensions and
cation-to-O distances (Table 1) within tetrahedral and oc-
tahedral sheets (Takeda and Morosin, 1975).

The D layer of the TS unit layer model given by Tak-

eda and Sadanaga (1969) is applicable only to polytypes
with 0, 120, or 2400 rotations. To describe all other po-
lytypes, we introduce additional unit layers, in which a
60, 180, or 3000 rotation of the atoms in the lower half
of the unit cell fi:)rms a trigonal prism around the alkali
cation (K or Na). The layer-group symmetry of this type
of TS unit layer is mP32m (see Fig. 3 of Takeda and
Sadanaga, 1969) and is designated as a T layer (trigonal
layer). A 1800 rotation of the T layer about the axis per-
pendicular to the layer was designated as the T* layer.
The same 1800 rotation of the D layer gives the D* layer.

Using these four unit layers (D, D*, T, and T*), Takeda
and Sadanaga (1969) showed that all the stacking se-
quences of the n1ica polytypes could be expressed with
only the displacements of these layers along the ::ta and
::t(a + b) axes of the hexagonal cell (perpendicular to the
c axis and without any rotational operations). The com-
ponents of displacement vectors in orthogonal coordi-
nates for the six stacking operations are listed in Table 2.
For the polytypes with only the D layers involving 0, 120,
and 2400 rotations and with 1M-type axial setting, the
shifts of layers are only along the a axis, and the amount
of shift with respect to the preceding one is always _ll3a.
However, the axial settings for general polytypes must be
chosen in accordance with their total displacements as
explained below.

SYMBOLS OF MICA POLYTYPE STACKING SEQUENCES

Amelinckx and Dekeyser (1953) were the first to use a
symbol and a diagram to illustrate a mica polytype struc-
ture. Their diagram, employed also by Smith and Yoder
(1956), is an elegant graphical model of describing the
stacking sequences by utilizing the interlayer cation-cat-
ion vectors in the mica structure projected on (001).
Amelinckx and ])ekeyser's numerical representation of
stacking sequence~ are the same as that used later by Zvy-
agin (1960), who used the alphabetic designations A, B,
and C instead of the numbers 1, 2, and 3 to express the
orientation of a layer relative to the standard coordinates.

The Zvyagin oriented stacking symbol (Z symbol) ex-
presses the stacking sequence of the N-Iayer mica with a
series of N letters, the jth letter of the series referring to
the absolute orientation of the jth layer. By this symbol,
the same stacking sequence may be expressed in several
ways depending on how one defines the standard axes.
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The vector stacking symbols (RTW syrnbol) of Ross et
al. (1966) give the relative rotations between adjacent
layers, and they do not depend on the axial setting. With-
in the brackets of the RTW symbols are N numbers, where
N is the number of mica layers per unit cell. The jth
number (A) of the stacking symbol, where j designates
any particular number in the sequence of N numbers,
refers to the relative angle of rotation bet\veen the jth and

U + l)th mica layer. The letter Aj can have the values 0,
:1:1, :1:2, or 3 that refer, respectively, to 0, :1:60, :t 120,
and 1800 relative rotations of the adjacent layers.

Even though the RTW symbols are useful in generating
all the possible mica polytypes with a given layer repeat,
the Z symbols are much more convenient in deriving the
intensity distribution functions of micas (Takeda, 1967).
However, even the Z symbols give only the orientations
of the layers and not the positions of the layer in the
standard coordinates. The positions must be derived in-
directly with the aid of the R TW or Z symbols.

By using the model of a mica unit layer proposed by
Takeda and Sadanaga (1969), it is possible to derive sym-
bols that give the positions of the individual unit layers
of the stacking sequence (TS symbol); the stacking of lay-
ers in this case involves only the displacements of the
unit layers. A direct derivation of the TS symbols facili-
tates the calculation of the PID functions. The TS sym-
bols give the position of the layer in the specified axial
setting, together with the type of the unit layer. Polytypes
with 0, 120, and 2400 rotations and with the 1M-type
axial setting are the ones most frequently found in nature.

Since these symbols are composed of a string of num-
bers consisting of 0, 1, or 2, they can be regarded as ter-
nary numbers. By convention, we express the sequence
by the string that gives the minimum decimal number.
These abbreviated symbols are useful both in generating
all possible polytypes with a given layer number and in
computing PID functions. The symbol can be generated
directly by applying the principles used in enumerating
RTW symbols, and the derived symbol itself expresses
the positional coordinates in the particular axial setting.

To convert the RTW symbol into the TS symbol, use
is made of a stacking operator, which causes displace-
ment of the unit layer, in accordance with the interlayer
rotation as expressed by each element of the symbol. This
operation is performed in an orthogonal C-centered crys-
tal structure, and the resulting symbol is transformed into
the final symbol in accordance with the proper axial set-
ting of each polytype (Takeda and Sadanaga, 1969). The
jth operator rj in the sequence is expressed as rj = mod(wj_1

+ Aj, 6) where Wj-1 is a number indicating the orientation
of the layer, for which the operator is to be applied (in
the same way of expressing the rotation angles as that
used in the RTW symbols), Wj-1 is equal to rj-1 except for
wo, Aj is the R TW symbol of the jth conventional layer,
and mod indicates the mod function. This function mod(n,
6) expresses a number n, in the form of m mod 6, where
m is an integer from 0 to 5.

The stacking symbol of the jth layer, Sj or (~, Y), can

be obtained from that of the U - l)th using the jth op-

erator rj as Sj = Sj-l .rj or (~, Y) = (~-l' Yj-l).(X,j, Y,) =

(~-l + X,j, Yj-l + Y,). For the first layer, Somust be set
to (Xo = 0, Yo = 0). The elements of the six stacking
operators X,j and Yrjare given for each r in Table 2.

As was mentioned before, the RTW symbols do not
depend on axial orientation, whereas the TS symbols de-
pend on the axial setting. Therefore, the symbols ob-
tained by applying the stacking operators in succession
are not always compatible with the orthorhombic or
monoclinic settings that so conveniently describe the po-
lytype structures. To be consistent with one of these axial
settings, the last symbol, (XN, YN), which expresses com-
ponents of the total displacements, must have at least one
zero element. That is, (XN, YN) must be in the form (-1,
0), (0, -1), or (0, 0) depending upon their respective axial
setting (Takeda and Sadanaga, 1969). The orientation of
the polytypes is set by the initial values of w, namely, W00
If the last symbol has no zero element, the same process
of converting the symbols must be repeated by changing
the value of W00

For those polytypes with the axial settings other than
orthogonal, the following transformation from the or-
thogonal setting to the monoclinic one must be applied:
For (-1, O)-type, ~ = X; + Z; and Yj = l}, and for (0,
-I)-type, ~ = X; and Yj = l} + Z;, where X;, l}, and
Z; are the elements of the jth stacking symbol in the old
orthogonal setting.

The inverse conversion, namely from the abbreviated
TS symbols to the RTW symbols, is also important. This
conversion can be accomplished with simple algorithms.
An intermediate symbol, the binary-represented symbol
Bj of the R TW symbol Aj of the jth layer, is expressed in
terms of the new symbols Yj, Yj+1, and Yj+2of the jth, U
+ I)th, and U + 2)th layer as

Bj = mod(Yj + Yj+l + Yj+2, 3) (1)

where mod(m, 3) is the mod function as explained before.
In Equation 1, when j + 1 or j + 2 (or both) have

values greater than N, the total layer number, the symbol
Y of the U + 1 - N)th or U + 2 - N)th must be used.
To convert the binary-represented symbols into the nor-
mal RTW symbols, one must replace the number 2 by

- 2, and 1 by 2, and leave the 0 symbol as it is.
These transformation routines have been included in

the program PTIDN written in FORTRAN IV (this pro-
gram is available from the senior author upon request),
which generates all the possible stacking symbols and
computes the intensity distribution functions. A more de-
tailed explanation of the RTW symbols and the TS sym-
bols is given by Takeda and Sadanaga (1969).

FOURIER TRANSFORMS OF THE UNIT LAYERS AND THE
PID FUNCTION

To study the nature of the Fourier transform of com-
plex mica polytypes, the Fourier transforms of the unit
layers of the four different layer types must be analyzed,
especially with reference to their symmetry relation in
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reciprocal space. The same PID function can be derived
more simply by the introduction of an unconventional
unit layer of mica (Sadanaga and Takeda, 1968). With
the aid of this model unit layer, the derivation of the PID
function can be treated as involving only displacements
of unit layers, and all four Fourier transforms for the D,
D*, T, and T* layers have identical values for the follow-
ing reflections along the c* reciprocal lattice rows:

hk*1 with h = 0 mod 3, k no condition;

with h = 1 mod 3, k = 0 or 2 mod 3;

with h = 2 mod 3, k = 0 or 1 mod 3 (2)

where hk*1 is the Miller index (diffraction symbol) for the
hexagonal axes. An example of the Fourier transform of
a representative mica unit layer is given in Figure 2 of
Takeda (1967). These indices should be transformed to
the hexagonal reciprocal lattice row 101 when the com-
putation is based on the parameters given in Table 1.

In general, the Fourier transform of an N-Iayer mica
polytype is given as (Takeda, 1967)

GN(hkl) =

N

~ Gj(h' k' I' )exp 27ri[h~xj + k~Yj + I(j - 1)] (3)
j=l

where Gj(h 'k'l') is the Fourier transform of the jth unit
layer with indices transformed in accordance with its in-
terlayer rotation around c*, and ~j, ~Yj' and U - 1) are

the components of a displacement vector from the origin
to the jth layer, along the axes a, b, c, respectively. Be-
cause of the symmetry inherent in the Fourier transform
of the unit layer, Gj(h'k'l') can be replaced by the Fourier
transform of the unit layer before the transformation,
Go(hkl). Thus, the intensity distribution is given by the
product of Go(hkl) and the sum of the exponential terms,
SN. The SN terms are designated as the PID (periodic in-
tensity distribution) function: I(IN I = IGoI x ISNI.

The PID function is a special type of fringe function
(Lipson and Taylor, 1958); its value squared and divided
by N (for the N-Iayer mica) has a form of the interference
function (Guinier, 1963), where the unit scattering power
is divided by the square of the structure factor of the
group of atoms under consideration. However, the inter-
ference function is in general not a periodic or discrete
function, which is characteristic of the SN function. A set
of N values of the SN function is characteristic of the layer
stacking sequence of polytypes and has been used effec-
tively in the determination of the stacking sequence by
systematically generating SN values for all possible N-Iay-
er polytypes. A computer program (PTST) has been writ-
ten to compute the PID function from the RTW symbol
(the program is available from senior author upon re-
quest).

In the above discussion, we assume that the Fourier
transforms of the D, D*, T, and T* layers are exactly
identical at those reciprocal lattice nodes given in Equa-
tion 2. If there are deviations from the ideal model, weak

reflections that violate the structural extinction rules and
slight deviation IDfthe periodicity will be observed.

EXPERIMENTAL PROCEDURE TO OBTAIN THE PID
FUNCTION

To characterize the mica polytype by X-ray precession
photography most easily, the following procedure was
used. The mica plate was mounted so that the (001) plane
was perpendicular to the goniometer rotation axis of the
precession camera. Adjustment of the goniometer arcs
was made so that c* was coincident with the dial axis.
Rotation of the crystal about the dial axis was made until
a principal reciprocal lattice net was found. This was ei-
ther the hOI, h3hl, 7i3hl, Okl, hhl, or 7ihl net for any mica
polytype. The h3hl and 7i3hl nets are :t60° from the hOI
position, the hhl and 7ihl nets are :t 600 from the Okl
position, and the Okl net is 900 from the hOI position. For
many polytypes, the Okl net is orthogonal. For triocta-
hedral micas, it is generally not possible to differentiate
the hOI, h3hl, and 7i3hl nets from one another by casual
inspection because of the pseudotrigonal nature of the
mica structure.

D sing six single-crystal diffraction photographs of the
above mentioned nets, any mica polytype can be identi-
fied. Simpler mica polytypes such as 1M, 2M1, and 2M2
can be identified by comparing the films with the stan-
dard patterns. All three-layer polytypes and 20 of the 26
four-layer polytypes can also be identified by their cell
dimensions, symmetry, and rules for structural extinc-
tions (Ross et a1.~,1966). Many other polytypes of higher
layer repeats, however, can only be identified by com-
paring their PID junctions or SN functions (Takeda, 1967).

To measure the intensities of complex mica polytypes
through the use of a microphotodensitometer, one must
obtain well-resolved X-ray diffraction patterns. For pre-
liminary identification, MoKa radiation is recommend-
ed. For mica polytypes with layer numbers N = 8-15,
CuKa radiation 'Nill give better resolution of the reflec-
tions. In the case where N = 15-30, FeKa or preferably
CrKa radiation ~{ith a fine slit of diameter 0.3-0.1 mm
must be used to obtain well-resolved diffraction patterns.

In practice, it has been found that measurement of the
periodic intensity distribution along the fOl10wing three
reciprocal lattice rows is usually sufficient to identify the
stacking sequence:: 021, 111, and T11.Lattice rows 041, 221,
and 'L21can be used equally well for identification of the
polytype if the reflections are strong enough. N everthe-
less, one can obsterve the PID of a polytype directly on
the photograph \\'ithout any intensity correction and re-
duction because the Fourier transform of the unit layer
of mica is generally constant in the range from 040 to
042 of the 1M repeat and also in some other parts of the
pattern (see Takeda, 1967, Fig. 2).

For an accurate analysis, the measured intensities must
be corrected for lip factors and absorption. Each Fo must
then be divided by the Fourier transform of the unit layer
Go(hkl) at the location of each reflection. To obtain the
values of Go(hkl), the structure and composition of the



Reciprocal Reciprocal
Dial lattice plane, lattice plane,

reading 1M setting 1M 2M1 2M2 setting'" 2M2

0"'''' (Ok/) 1M(Ok/) 2M1(Ok/) (hO/) 1M(hh/)
30 (h3h/) 1M(hO/)t 1M(hO/)t (:3hh/) 2M2(Ok/)
60 (hh/) 1M(hh/) 2M1(hh/) (hh/) 2M2(hh/)
90 (hO/) 1M(hO/) 1M(hO/) (Ok/) 2M2(Ok/)'"

Stacking
Calculated PID

Member'" sequence Axial setting Space group S3(OkL)** S3(hhL) or S3(hhL)

Ternary 3T[222] 3T P31.212 1.7,1.7,1.7 1.7,1.7,1.7

3 Tc1[022] 3 TC1 (2M2) C1 1.3, 0.9, 2.5 0.9, 1.3, 2.5
Senary 3M1[033] 3M1(2M1) C2/m 3.0,0,0 1.3, 2.5, 0.9

3M2[11 ~] 3M1 C2 1.7,1.7,1.7 0.9, 1.3, 0.9
3T~[011] 3M1 C1 0,0,3.0 0.9, 1.3, 2.5
3 TCa[123] 3M1 C1 1.7, 1.7, 1.7 1.3, 0.9, 2.5
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TABLE3. Types of reciprocal lattice nets for iclentication of three
basic polytypes

'"
Conventional 2M2 axial setting of Smith and Yoder (1956). Note that

2M2(Ok/) is the characteristic pattern of 2M2.

*'" Arbitrarily chosen origin.

t In dioctahedral micas, weak spots appear in a reciprocal lattice row
with h = 0 mod 3.

one-layer mica should be approximately known. If the
structure is not known, the method described by Takeda
and Sadanaga (1969, Table 1) may be used to evaluate
the Go(hkl).

If the values of SN are obtained over more than one
repeat, the average values should be used to avoid the
errors in measurements of Fa and errors in evaluation of
Go(hkl). Finally, SN is scaled by making use of the follow-
ing relation:

N

~ [Sf(hkl)]2 = N2.
j=l

ANALYSIS OF MICA STACKING SEQUENCES

One- and two-layer micas

The method of identifying the six sinlplest mica poly-
types of Smith and Yoder (1956) has been given by pre-
vious workers (Zvyagin, 1960; Franzini and Schiaffino,
1963). The major difficulty in identifying the polytypes
is mostly due to the complexity of dHfraction patterns
caused by twinning or by crystals composed of more than
one polytype. Smith and Yoder (1956) pointed out the
similarity of the single-crystal X-ray diffraction patterns
of the twinned 1M polytype to those of the 3T polytype.
A method of analyzing simple twin operations (Sadanaga
and Takeuchi, 1961) has been extended by Rieder (1970)
in a systematic manner to include complex twins.

Our experience shows that one of thc~easiest ways for
the nonspecialist to identify the simplest mica polytypes

TABLE4. Crystallographic data of all possible three-layer micas

is to compare the diffraction patterns with standard pat-
terns such as those given in Table 3. In Table 3 standard
patterns for each one- and two-layer mica are shown for
a particular dial setting of the precession camera.

(4)

Three-layer micas

Two of the six possible three-layer polytypes (Table 4)
have interlayer rotations 0 or ::t 1200. The two polytypes
are called ternary members in this text because their
stacking sequence (0, 2, or 1) can be expressed by ternary
numbers (0, 1, or 2). Both of them, namely 3T[222] and
3TCI[022], are the simplest form of the basic polytype
series that commonly occur in nature. The 3 T polytype
is well known because it is one of the six forms described
by Smith and Yoder (1956). However, the 3TcI form is
as simple as the 3T form and is probably more common
than the 6H form. The cell dimensions and space group
are given by Ross et ai. (1966). The other four polytypes,
called sixfold (senary) members, can be identified by the
axial setting, crystal system, space groups, and any special
extra-extinction rules beyond those required for the space
group (i.e., structural presence criteria).

Great care should be taken not to identify a complexly
twinned crystal as a new polytype. Most of the 3M forms
reported have been found to be twins. To be sure of the
correct stacking sequence, it is recommended that the ob-
served intensities be compared to the calculated charac-
teristic PID as given in Table 4. In spite of their simple
stacking sequence, the number of crystals identified as 3 T
appears to be rather small. The intensity distribution dis-
played by the 3T polytype is very similar to that of the
1M polytype with 3T-type twinning, especially in trioc-
tahedral micas. Thus, the intensity distribution should be
carefully measured to assure the correctness of a 3 T
stacking sequence. The dioctahedral 3 T[222] mica crystal
structures identified to date are: muscovite (Giiven and
Burnham, 1967; Amisano-Canesi et aI., 1994), parago-
nite (Sidorenko et aI., 1977), lepidolite (Brown, 1978),
and protolithionite (Pavlishin et aI., 1981; Weiss et aI.,
1993). Sadanaga and Takeuchi (1961) identified a 3T
trioctahedral polytype by measuring intensity data. No
3T polytype was identified by Ross et ai. (1966).

Four-layer micas

Among 26 possible four-layer mica polytypes, six po-
lytypes (three ternary and three senary members, Table

'"
Ternary polytypes contain no 60, 180, or 3000 layer rotations; senary forms contain 60, 180, or 3000 layer rotations.

*'" L = 0, 1, and 2.



L 4M1[0202] 4M2[0222] 4Ma[2222] 4 Tc1[0022]

0 1.000 2.646 2.000 1.000
1 1.732 1.732 2.450 0.897
2 3.000 1.732 0 1.732
3 1.732 1.732 2.450 3.346

C2/c C2 C2/c C1
0101 0010 0011 0111
4 Tc4[0213] 4 Tc;[1322], ** 4 n;[1122] 4 TC11[0112]

4 Tcs[0132]

Axial Stacking S4(hh/)
setting sequence Space group S4(Ok/) or (fih/)

20 401[0303] Ccmm *000
402[1313] C2cm
40a[2323] Cc2m *0*0
404[1212] C2221
4Me]1TI1 ] C2/c **0*
4M7[0121 ] C2

1M 4M4[0033] C2/m *000
4Ms[1122] C2 **0*
4 Tc;[1122] C1 **0* *0*0
4 TC;[1322] C1 **0*
4 Tc4[0213] C1
4 Tcs[0132] C1
4 Tea[2233] C1 *0*0 **0*
4 Teg[1221] C1 *0*0
4 Tc10[0011] C1 *000
4 TC11[0112] C1

2M2 4Ma[0101] C2/c *000
4Mg[1131 ] C2 *0*0
4M10[1212] C2/c *0*0
4M11[1232] C2 **0*
4 Tea[1133] C1 **0*
4 Tc;[0123] C1

Note: the S(hk/) designations for those polytypes that show extra-
extinction beyond that required by the space group are as follows: *000
4.0,0,0,0; *0*0 2.0,0,3.5,0; **0* 2.0,2.4,0,2.4. Dash stands for no
such extinction.
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RTW symbol

TABLE5. Calculated PID functions, S4(02L), for the four-layer ternary polytypes and related senary polytypes*

Space group
TS symbol
Senary counterparts

Note: all polytypes have the 1M-type axial setting.

*
The nine four-layer polytypes that cannot be identified by symmetry and extra-extinctions othor than that of space group (see Ross et aI., 1966).

** S4(11L) of 4 TCahas 4 Tc2-type intensity distribution al'1dthus differs from 4 Tcs.

5) cannot be identified without comparing their charac-

teristic PID patterns. Three four-layer polytypes have been
found in natural and synthetic micas. Another ternary
polytype, 4TCI[002L],belongs to the [On2L]series of mica
polytypes that are frequently found, though this particu-
lar member of the series has not yet been identified. Other
members of senary polytypes are distinguished by the
crystallographic data given in Table 6. The extra-extinc-
tion rules (Ross et aI., 1966), other than those required
by the space group, are useful in identifying these simpler
mica polytypes, but they are a part of the information
contained in the PID function (Takeda, 1967).

The similarities and dissimilarities in intensity distri-
bution between polytypes follow a clear system. Inten-
sities of some reflections (e.g., 001) are the same for all
mica polytypes within a given sample. Intensities of oth-
ers (which are called subfamily reflections by adherents
to the aD theory) are identical for polytypes within each
subfamily. All the ternary polytypes are composed ofD

TABLE6. Crystallographic data and S4(Okl), S4(hhl), or S4(hh/)
for all senary four-layer polytypes

layers and give nearly identical hOI, h3hl, and 7i3hl pat-
terns. This is because the projections of the crystal struc-
ture in the direction perpendicular to these three planes
are identical. Only the diagnostic reciprocal lattice nets
are different and of value in identification. Therefore,
the mode of stacking the layers must be defined by exam in -
ing the Okl, hhl, or 7ihl nets, with the crystal structure
projections differing in the direction perpendicular to
these planes.

Of the 26 possible four-layer mica polytypes, nine can-
not be distinguished by symmetry and structural presence
criteria alone (Ross et aI., 1966). These nine polytypes
are listed in Table 5 and include four ternary and five
senary forms. SYJnmetry and a use of the PID function,
as expressed along the 02L reciprocal lattice row line,
S4(02L), distinguish seven of the nine polytypes. The other
two polytypes (4'Tc3, 4Tcs) can be distinguished by ex-
amining both the 02L and IlL row lines and comparing
these to the S4(021..)and S4(11L) calculated PID functions.

Three polytypes in Table 5 have been identified. The
4M2[0222] form has been reported by Ross et al. (1966)
and 4Tcs[0132] by Takeda (1967). The 4MI[0201]polytype
has been found in synthetic fluorphlogopite coexisting with
1M mica (T. Nishida, 1969 personal communication).

For those polytypes with layer number larger than four,
the method of identification, on the basis of symmetry
and visual inspection, used for the four layer polytypes is
not always efficient. To identify the more complex mica
polytype, the PII) functions along several reciprocallat-
tice rows and synlmetry elements must be generated for
all possible N-Iayer polytypes. These data (Tables 7-10)
are then compared to the observed diffraction data to
define the particular stacking sequence.

RESULTS

The most comI1Gon polytypes among complex stacking
sequences are based on the 1M form with a single 1200
periodic stacking fault introduced every n layers (Ross et
aI., 1966). The series is represented by the symbol [(0)n21].
The PID functions of the polytypes belonging to this se-
ries have special characteristics: a strong peak at every
Nth reflection (where N = n + 2) along an Okl row line
and a rapid decrease of intensity in an asymmetrical
way from each strong Nth reflection (see Fig. 1 of Ross
et aI., 1966).



TAKEDA AND ROSS: MICA POL YTYPISM 721

TABLE 7. The PID functions, SN(02L), of mica polytypes belonging to the 1M series

L

Polytype Axial a 1 2 3 4 5 6 7 8 9 10 11
symbol setting 12 13 14 15 16 17 18 19 20 21 22 23

5Tc1 1M 1.00 2.13 4.17 1.17 0.87

6Tc1 3Tc1 1.35 0.92 0.88 1.13 2.53 4.99

7Tc1 1M 1.00 0.87 0.93 1.27 2.94 5.81 1.54

8Tc1 1M 1.00 1.42 3.35 6.63 1.73 1.09 0.90 0.87

9Tc, 9Tc1 3.76 1.58 1.08 0.90 0.87 0.94 1.19 1.93 7.46

10Tc1 1M 1.00 0.89 0.87 0.95 1.17 1.73 4.17 8.29 2.13 1.29

11TC1 1M 1.00 1.26 1.89 4.58 9.11 2.33 1.40 1.06 0.92 0.87 0.89

12TC1 3Tc1 1.35 1.06 0.92 0.87 0.88 0.96 1.13 1.51 2.53 9.94 4.99 2.05

13Tc1 1M 1.00 0.90 0.87 0.88 0.96 1.12 1.44 2.21 5.40 10.76 2.73 1.62
1.20

14 TC1 1M 1.00 1.18 1.54 2.37 5.81 11.59 2.94 1.73 1.27 1.05 0.93 0.88
0.87 0.91

15TC1 3Tc1 1.35 1.10 0.96 0.89 0.87 0.88 0.93 1.04 1.25 1.63 2.53 6.22
12.42 3.14 1.84

16 TC1 1M 1.00 0.91 0.87 0.87 0.90 0.97 1.09 1.31 1.73 2.69 6.63 13.24
3.35 1.96 1.42 1.15

17 TC1 1M 1.00 1.14 1.38 1.83 2.86 7.05 14.07 3.55 2.07 1.50 1.21 1.04
0.94 0.89 0.87 0.88 0.92

18TC1 9Tc1 3.76 2.19 1.58 1.26 1.08 0.97 0.90 0.87 0.87 0.89 0.94 1.04
1.19 1.45 1.93 3.02 7.46 14.89

19TC1 1M 1.00 0.92 0.88 0.87 0.87 0.91 0.97 1.07 1.24 1.52 2.03 3.18
7.87 15.72 3.96 2.30 1.65 1.32 1.12

20Tc1 1M 1.00 1.11 1.29 1.59 2.13 3.35 8.29 16.55 4.17 2.42 1.73 1.38
1.17 1.03 0.95 0.90 0.87 0.87 0.89 0.93

21 TC1 3Tc1 1.35 1.16 1.03 0.95 0.90 0.87 0.87 0.88 0.91 0.97 1.07 1.21
1.43 1.81 2.53 4.37 17.37 8.70 3.51 2.23 1.66

22Tc1 1M 1.00 0.93 0.89 0.87 0.87 0.88 0.92 0.97 1.06 1.20 1.40 1.73
2.33 3.67 9.11 18.20 4.58 2.65 1.89 1.49 1.26 1.10

23 TC1 1M 1.00 1.10 1.24 1.46 1.80 2.43 3.84 9.52 19.03 4.78 2.76 1.97
1.55 1.30 1.14 1.03 0.95 0.91 0.88 0.87 0.87 0.89 0.94

The PID functions of this series with N = 5-23 are the Krusne Mountains (Erzgebirge). The 8Tc12[00022202]

given in Table 7. Their axial settings indicate the position polytype (Table 8) has a more complex sequence (Ross

L = 0 and are in accordance with the convention of Tak- et aI., 1966, Fig. 1) but has also been interpreted as a

eda and Sadanaga (1969). Within this series Ross et ai. modification of the 1M basic series.
(1966) reported the following: 3Tc1 (02"2), 8 Tc1[(0)622], Another common series is based on the 3 T basic po-
14Tc1[(0)1222], and 23Tc1[(0)2122]. The 3Tc1 form, al- lytype. General symbols are given as [(222)nO] for the (3n

ready described above, is the simplest of the series. Among + 1) layer polytypes and [(222)n22] for the (3n + 2) layer
the four-layer micas 4Tc1[0022] is most likely to be found, ones. Examples found in nature include 4M2(0222),

but Zvyagin (1960) predicted that 4M3 [2222] should also 8Ms[(222)222], and IIM1[(222)322]. The PID functions

occur because of its high symmetry. Rieder (1970) iden- of the 3 T series are given in Table 9.

tified the 9Tc1[(0)722] in Li- and Fe-bearing micas from The 10Tc3[0022222222] polytype is also considered to

TABLE 8. Examples of the PI D functions S8(02L) for some eight-layer polytypes with modified 1M series related to 8 TC12

Polytype Axial
L

symbol setting a 2 3 4 5 6 7

8 TC12 1M 2.000 1.326 1.268 3.200 3.464 3.200 4.732 1.326
8M2 1M 6.557 1.732 1.732 1.732 1.732 1.732 1.732 1.732
8Tc4 1M 1.000 2.039 2.608 2.548 1.732 4.923 4.147 1.055
8Mg 1M 5.292 3.200 2.450 1.326 0.000 1.326 2.450 3.200
8M14 1M 5.292 2.450 0.000 2.450 3.464 2.450 0.000 2.450
8Te; 1M 2.000 1.614 1.268 0.836 0.000 5.078 4.732 2.628
8Tc;6 1M 2.000 3.887 0.000 4.857 3.464 2.982 0.000 0.639

Note: stacking sequences: 8 TC12[0002~02], 8M~[00000222], 8 Tc4[00002202], 8Mg[00002222], 8M14[00022"222], 8 Tc2[00000202], 8 TC36[00222222].
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TABLE 9. The PID functions, SN(02L), of the 3 T-series polytypes

Polytype L

symbol 0 2 3 4 5 6 -l 8 9 10 11

5M3 2.65 1.07 2.80 2.80 1.07
7M3 4.36 0.77 3.12 2.16
8M3 4.36 0.72 1.73 4.18 1.73

10M3 6.08 0.66 1.07 4.53 2.80 1.73
11M3 6.08 0.65 0.95 2.42 5.59 1.88 1.88
13M3 7.81 0.63 0.81 1.40 5.96 3.48 1.84
14M3 7.81 0.62 0.77 1.20 3.12 7.01 2.16 1.73
16M3 9.54 0.61 0.72 0.98 1.73 7.38 4.18 2.04 1.73
17M3 9.54 0.60 0.70 0.92 1.46 3.83 8.44 2.47 1.79
19M3 11.27 0.60 0.67 0.83 1.16 2.07 8.81 4.89 2.28 1.78
20M3 11.27 0.60 0.66 0.80 1.07 1.73 4.53 9.87 2.80 1.92 1.73
22M3 13.00 0.59 0.65 0.75 0.95 1.35 2.42 10.24 5.59 2.54 1.88 1.73

Note: stacking sequences with layer numbers N = 3n (n is an integer) do not yield the 3 T seri~es.Polytype 8M3 = 8Ma of Ross et al. (1966), and
11M3 = 11M1 of Ross et al. (1966).

TABLE 10. The PID functions, SN(02L), of mica polytypes of the 2M1 series

Poly- Ltype Axial
symbol setting 0 2 3 4 5 6 7 8 9 10 11

5Tc; 1M 1.00 1.17 2.13 0.87 4.17
6Tc; 3Tc1 3.88 0.60 0.47 3.26 1.65 2.65
7Tc; 1M 1.00 5.81 1.27 0.87 1.54 2.94 0.93
8Tc; 1M 1.00 0.23 0.90 4.07 1.73 1.78 3.35 5,,31
9Tc; 9Tc1 0.87 1.08 3.76 1.93 0.94 0.90 1.58 7..46 1.19

10Tc; 1M 2.00 4.05 6.74 1.37 0.54 0.00 1.32 4,,90 1.89 1.66
11Tc; 1M 1.00 0.87 1.06 2.33 4.58 1.26 0.89 0,,92 1.40 9.11 1.89
12Tc; 3Tc1 2.06 5.72 1.73 0.20 0.31 0.78 1.73 8.,17 4.76 2.25 1.73 1.67

Note: stacking sequences are [(2~)n22] or [(2~)nO].

be a modification of the 3T basic series. This polytype
reveals the same PID intensities as those of the mono-
clinic ones, but the stacking sequence reveals triclinic
symmetry. Theoretical studies of this mica polytype are
given by Sadanaga and Takeda (1968), who proposed
diffraction enhancement of symmetry from triclinic to
monoclinic.

Mica polytypes related to the 2M. basic polytype are
expected because the 2M. polytype is commonly found
in nature (Giiven, 1971). A 24Tc biotite has been re-
ported by Hendricks and Jefferson (1939) from Ambu-
lawa, Ceylon. Smith and Yoder (1956) mentioned that
this 24 Tc biotite is a twin of the 8Tc polytype, but they
did not determine the stacking sequence. Takeda (1969)
derived PID values from the intensity distribution given
in the literature for this 24Tc biotite. The calculated PID
functions for various eight-layer polytypes (Table 10)
shows that the 24Tc mica is a twinned 8Tc2[(2L)3L2]po-
lytype (Fig. 1).

DISCUSSION

Of the six predicted ordered mica polytypes (Smith and
Yoder, 1956), only the 6H polytype has not yet been
found in nature. The rarity or nonoccurrence of the 20,
2M2, and 6H mica polytypes is explained by the ditri-
gonal nature of most mica unit layers. The trigonal ar-
rangement of the basal 0 atoms prevents stacking of the
unit layers by other than 0 or :t 1200 rotations. Thus, the

6H, 20, and 2M~ polytypes, which require 60 or 1800
rotations, are very rare (Rule et aI., 1987).

The stacking sequences of complex mica polytypes de-
termined by application of the PID function (Ross et aI.,
1966; Takeda, 1967) have revealed that mica polytypes
with smaller layer numbers than 6H occur quite frequent-
ly. Many of the rnica polytypes thus far identified have
layer stacking sequences based on the 1M or the 3T po-
lytypes and form the 1M and 3T series. In addition to
the 1M and 3T series, we propose that 2M. is a basic
structure because 8Tc2 (former 24Tc of Hendricks and
Jefferson, 1939) is based on the 2M. sequence with a
periodic stacking fault.

Basic structures found in the mica polytypes, such as
the 1M, 2M., and 3 T series, are also found in silicon
carbide. The basic series found in silicon carbide are sug-
gested to be caused by spiral growth (Frank, 1951). The
presence of these series in mica suggests that the mech-
anism of generating the complex mica polytypes may also
be explained by spiral growth. This origin for mica po-
lytypism has been examined by Baronnet (1975) in his
study of growth spirals in complex mica polytypes. Sup-
ported by their observations on synthetic as well as nat-
ural micas, Baronnet and Kang (1989) proposed that the
principles of the perfect-matrix (Baronnet, 1975) and
faulted-matrix (Baronnet et aI., 1981) models of screw
dislocation theory of polytypism can explain the origin
of most of the cOlnplex polytypes of micas.
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On the basis of the structural refinements of coexisting
1M and 2Ml polytypes, Takeda and Floss (1975) pro-
posed that the structure of a particular unit layer of a
polytype is directly related to the atomic and geometric
constraints imposed upon it by the two adjacent unit lay-
ers, the constraints varying with the relative orientation
of the OH bond in the adjacent layers. Thus, the unit
layer of the 1M polytype with adjacent layers in 00 rela-
tive orientation has a crystal structure slightly different
from that of the unit layer of the 2Ml polytype, which
has adjacent layers in :t 1200 relative orientation. It is
further proposed that once interlayer constraints form be-
tween adjacent layers, these constraints tend to control
the orientation of the next nucleated layer so as to give
an ordered stacking sequence, usually of the 1M or 2Ml
type and, more rarely, the 3T type. Once a sequence of
layers has formed through layer-by-Iayer nucleation, fur-
ther crystal growth often occurs by ITLeanSof a spiral
growth mechanism. The polytypic form of the final crys-
tal is controlled by the sequence of layers within the pri-
mary platelet and within the dislocation step.

Graphic examination of the complex stacking sequenc-
es (Fig. 1), which are not readily explained by the faulted-
matrix model (Baronnet and Kang, 1989), suggests the
following general observation (Baronnet and Takeda, un-
published data). When a stacking fa~lt is introduced with-
in one of the 1M, 3 T, and 2Ml structures, the next layer
or the next few layers are so stacked that the last stacking
vectors return as closely as possible to the direction par-
allel to the original direction of the basic stacking se-
quences (Fig. 1), and these layers forrn a new unit for
subsequent growth. This has been confirmed by a recent
HR TEM study of stacking faults in a biotite single crystal
(Baronnet et aI., 1992).

We present the following hypothesis" which should be
tested in future studies. When a stacking fault is generated
in the basic polytype structure, the orientation of the next
layer to be stacked on top of the faulted one will be in-
fluenced by the stacking sequences of the previous layers,
and, within the next one or several steps, the orientation
of the stacking direction will be recov,ered as closely as
possible to the original direction. Further crystal growth
then occurs by means of a spiral gro\\rth mechanism to
retain the stacking order.

This recovery process of the faulted matrix may be
controlled by a statistical process similar to a "random
walk" and constrained for only a few short steps. There-
fore it cannot be rigorously predicted because the influ- .
ence of the preceding stacking sequence :may not be strong.
The mode of the stacking sequences found in a clintonite
"valuevite" crystal (Ohta et aI., 1978) shows such a sta-
tistical process. Another mechanism for the above recov-
ering sequence was proposed by Takeda and Ross (1993).
During spiral growth of a basic polytype, a platelet with
a stacking fault deposited on a part of the spiral surface
may retain the same orientation as that of the basic se-
quence if the spiral grows over the platelet and covers it
in such a manner that the bottom of the covering layer
shifts laterally to match the sequence of the top of the
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Fig. 1. Examples of stacking sequences of observed complex
mica polytypes represented by their stacking vectors (Ross et aI.,
1966). (A) 1M series, (B) 3T series, and (C) 2M! series.

platelet. Further studies are required to determine some
of the more complex mica polytypes by the method de-
scribed in this paper.
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