FLUIDS IN THE CRUST

Constraints on the mobilization of Zr in magmatic-hydrothermal processes in subduction zones from in situ fluid-melt partitioning experiments ‡

MARION LOUVEL1,*, CARMEN SANCHEZ-VALLE1,†, WIM J. MALFAIT1, HERVE CARDON2, DENIS TESTEMELE3 AND JEAN-LOUIS HAZEMANN3

1Institute for Geochemistry and Petrology, ETH Zurich, CH-8092, Zurich, Switzerland
2Laboratoire de Géologie de Lyon, ENS Lyon, FR-69364, Lyon, France
3Institut Néel, Département MCMF-Grenoble, FR-38042, Grenoble, France

ABSTRACT

The partitioning of Zr between high P-T aqueous fluids and melts has been investigated in situ in the haplogranite-H2O and haplogranite-(F)-H2O systems to assess the mobilization of high field strength elements (HFSE) in magmatic-hydrothermal processes in subduction zones. The partition coefficients \(D_{Zr}^m \) were determined from Zr concentrations measured in situ by synchrotron X-ray fluorescence (SXRF) in both aqueous fluids and F-free or F-bearing hydrous haplogranite melts equilibrated in diamond-anvil cells at 575 to 800 °C and 0.3 to 2.4 GPa. This experimental approach eliminates the need for internal or external calibrations of the SXRF signal and/or post-mortem analysis of the melt phase, hence decreasing the total uncertainties on \(D_{Zr}^m \) below 16%. Above 0.6 GPa, Zr partitions favorably into the hydrous silicate melt in both F-free and F-bearing systems, with \(D_{Zr}^m \) that range between 0.19 ± 0.02 and 0.38 ± 0.03. However, the relatively high \(D_{Zr}^m \) values indicate that alkali-silica rich aqueous fluids generated by metamorphic devolatization may contribute significantly to the recycling of HFSE in subduction zones. The efficient uptake of Zr (and likely other HFSE) by subduction zone fluids, regardless of their nature (aqueous fluid, hydrous melt, or supercritical fluid), supports the idea that the typical HFSE depletion recorded in arc magmas does not result from their incompatibility in water-rich slab-derived fluids but most probably originates from complex fluid-melt-rock interactions occurring at the slab interface and within the mantle wedge. At shallow crustal pressure conditions (800 °C and 0.3 GPa), Zr partitions reversely into the aqueous fluid in the presence of fluorine (\(D_{Zr}^m = 1.40 ± 0.10 \)) as observed for Nb at similar conditions by Webster et al. (1989). The enrichment of the aqueous phase in HFSE (Zr, Nb) at shallow crustal conditions is likely related to the enhanced peralkalinity of low pressure, F-bearing aqueous fluid with temperature, that provides the favorable conditions for their mobilization via the formation of HFSE-O-Si/Na clusters. This mechanism may control the enrichment in HFSE (and plausibly other rare metals such as REE) in early magmatic fluids exsolved from granitic melts, leading to the formation of HFSE-enriched aggregates in shallow magmatic-hydrothermal environments (e.g., Strange Lake and Thor Lake Nechalacho deposit, Canada; Galineiro complex, Spain).

Keywords: Zirconium, HFSE, fluid-melt partition coefficients, SXRF, subduction zones, rare metal deposits

INTRODUCTION

It is widely accepted that volatile-rich fluids released from the subducting slab favor partial melting of the mantle wedge and drive arc magmatism (Hermann et al. 2006; Johnson and Plank 1999; Manning 2004; Schmidt and Poli 1998; Stern 2002). However, the link between the chemistry of subduction zone fluids (e.g., aqueous fluid, supercritical liquid, or slab melt) and the trace element signature of arc magmas remains poorly understood. Subduction-related volcanic rocks are characterized by a strong enrichment in large ion lithophile elements (LILE: Sr, Rb, Th, U…) and a depletion in high field strength elements (HFSE: Nb, Ta, Zr, Ti, Hf) compared to mid-ocean ridge basalts (Gill 1981; Hawkesworth et al. 1991). This signature is mainly controlled by the incompatible or compatible behavior of trace elements upon fluid/melt-rock interactions in the slab and/or the mantle wedge. For instance, the HFSE depletion has commonly been assigned to the low solubility of HFSE-bearing accessory phases, such as rutile or zircon, in H2O (Antignano and Manning 2008; Audetat and Kepller 2005; Tropper and Manning 2005) and their selective segregation in minerals from the slab or the mantle wedge such as Ti-clinohumite, olivine, pyroxenes,