FLUIDS IN THE CRUST

Redox effects on calcite-Portlandite-fluid equilibria at forearc conditions: Carbon mobility, methanogenesis, and reduction melting of calcite†

CODI LAZAR*1,2, CHI ZHANG1,3, CRAIG E. MANNING2 AND BJORN O. MYSEN1

1Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A.
2Department of Earth and Space Sciences, University of California, Los Angeles, California 90095, U.S.A.
3Key Laboratory of the Earth’s Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China

ABSTRACT

Oxygen fugacity (f_{O_2}) is a fundamental parameter that controls carbon mobility in aqueous fluids in geological environments such as subduction zones, where reduced serpentinite fluids have the potential to infiltrate oxidized carbonate-bearing lithologies. Using experiments and calculations, we describe how mineral-fluid equilibria evolve as f_{O_2} decreases in the model Ca-C-O-H system at forearc conditions (300–700 °C and 2–10 kbar). Experimental calcite solubility was constant at f_{O_2} values from quartz-fayalite-magnetite (QFM) to hematite-magnetite (HM). At lower f_{O_2} values of iron-magnetite (IM) or wüstite-magnetite (WM), calcite reacted with H2 to form methane plus portlandite or melt. These results were consistent with thermodynamic calculations and indicate that carbon mobility, as parameterized by total aqueous carbon ([C_{TOT}]), is strongly dependent on f_{O_2}. At constant pressure and temperature, carbon mobility is minimized at oxidizing conditions, where [C_{TOT}] is controlled by calcite solubility. Carbon mobility is maximized at the most reducing conditions because all the carbon in the system is present as CH4. An intermediate region of carbon mobility exists in which calcite is stable with a CH4-bearing fluid. As pressure increases from 2 to 10 kbar, the f_{O_2} range over which calcite is stable with a methane-rich fluid shifts to more reducing conditions. The variety of geological conditions with the potential for redox enhancement of carbon mobility becomes more restricted with depth. Reduction melting was observed at 700 °C and 6 kbar, and at 650 °C and 10 kbar, due to the partial reaction of calcite to portlandite at conditions above the hydrous melting curve of calcite+portlandite. Although likely metastable in the present experiments, reduction melting may occur in nature whenever H2 partially reduces carbonate minerals at pressures and temperatures above the hydrous melting curve of calcite+portlandite. Whether it causes melting or not, calcite reduction is likely an important mechanism for abiotic methanogenesis in natural systems such as subduction zone forearcs or similar environments with the potential for interaction of reduced fluids with carbonate minerals. Because calcite solubility at oxidized conditions is already known to increase substantially with pressure, the additional increase in carbon mobility provided by calcite reduction implies that subduction zones may host some of the most carbon-rich aqueous fluids on Earth.

Keywords: Carbon cycle, subduction zones, fluid-rock interaction, serpentization, forearc mantle, methanogenesis

INTRODUCTION

A large portion of inorganic carbon returned to the mantle during subduction is contained in calcite, aragonite, and other carbonate minerals. Much of the carbonate is present as primary clasts and/or matrix cement in pelagic sediments (Sano and Williams 1996), or as hydrothermal veins in metamorphosed oceanic lithosphere (Morgan and Milliken 1996). Along the subduction path, carbon mobility in aqueous fluids is expected to increase dramatically with depth due to the well-established enhancement of calcite solubility at elevated pressure (P) and temperature (T) (Manning et al. 2013; Facq et al. 2014). For example, experiments in pure water show that the solubility of calcite at 700 °C is ∼1000 times higher at 10 kbar than at 1 kbar (Caciagli and Manning 2003). Addition of NaCl amplifies this solubility increase: at 700 °C and 10 kbar, calcite solubility in NaCl-H2O solutions where $X_{NaCl} = 0.3$ (mole fraction) is about 10 times higher than in pure water at the same P and T (Newton and Manning 2002).

Because carbon speciation depends on redox conditions, calcite solubility is also likely to vary with oxygen fugacity (f_{O_2}). Following Le Chatelier’s principle, decreasing f_{O_2} theoretically favors calcite (CaCO$_3$) dissolution, as illustrated by the following reactions:

* E-mail: clazar@ciw.edu
† Special collection papers can be found on GSW at http://ammin.geoscienceworld.org/site/misc/specialissueltlist.xhtml