What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates

Mössbauer parameters of iron in sulfate minerals†

M. Darby Dyar1,*, Elly Breves1, Erica Jawin1,†, Gerard Marchand1, Melissa Nelms1, Vanessa O’Connor2, Samantha Peel1,§, Yarrow Rothstein1, Elizabeth C. Sklute1,||, Melissa D. Lane3, Janice L. Bishop4 and Stanley A. Mertzman5

1Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts 01075, U.S.A.
2Department of Geosciences, Smith College, Northampton, Massachusetts 01063, U.S.A.
3Planetary Science Institute, Tucson, Arizona 85719, U.S.A.
4SETI Institute/NASA-Ames Research Center, Mountain View, California, 94043, U.S.A.
5Department of Earth and Environment, Franklin and Marshall College, Lancaster, Pennsylvania 17603, U.S.A.

Abstract

Although Fe-sulfate minerals occur only rarely on Earth as alteration products of sulfidic basalts or in hydrothermal systems, multiple lines of evidence point to the importance of Fe- (and other) sulfate minerals on the surface of Mars. One such martian data set comes from the MIMOS II Mössbauer spectrometers on the Mars Exploration Rovers, which acquired hundreds of spectra from the martian surface at two locations. Interpretation of those spectra has been limited by the lack of a comprehensive set of laboratory analog spectra of the broad range of naturally occurring sulfate minerals. Accordingly, this study reports Mössbauer data of 98 samples representing 47 different sulfate mineral species, all containing six- or higher-coordinated Fe. The resultant Mössbauer parameters are related to the local polyhedral environment around the Fe cation in each mineral to explain variations in spectral characteristics. Results show that the size of the coordination polyhedron is the best predictor of quadrupole splitting, which increases with both octahedral volume and mean bond length. Species within groups of structurally similar minerals are shown to have comparable spectral peaks that generally fall within small ranges. Although coordination polyhedron geometry is not necessarily unique to any particular mineral species or group, Mössbauer data can be used to help constrain mineral identifications from martian spectra. The number of mineral species is large, but the range of crystal structures and hyperfine parameters may be small, so that in many cases, individual minerals cannot be uniquely fingerprinted. Examples would include quenstedtite, coquimbite, kornelite, and lausenite, which have indistinguishable spectra, as do apjohnite, bilinite, dietrichite, and römerite. Overlap of Mössbauer parameters is a particular complication for identification of Fe3+-rich phases because the range of Mössbauer parameters for Fe3+ in any coordination number is so small. Previous analyses of martian Mössbauer spectra reported the presence of jarosite (Klingelhöfer et al. 2004; Morris et al. 2004) and an unspecified ferric sulfate (Morris et al. 2008). New data presented here indicate that botryogen, metasideronatrite, and slavikite exhibit Mössbauer spectra similar to those attributed to jarosite at Meridiani Planum. Fibroferrite and rhomboclase have parameters similar to those observed at Arad Samra, and copiapite and parabutlerite could be present at Tyrone Mount Darwin and Berkner Island. Unique mineral identifications are generally not possible from Mössbauer data alone, particularly for paramagnetic phases, although combining Mössbauer results with other data sets enables a greater level of confidence in constraining mineralogy. This study provides a new expansive data set for future interpretation of iron sulfates on Mars.

Keywords: Mössbauer, sulfate, jarosite, Mars

Introduction

Iron sulfates, many of which form as alteration products of sulfides, are relatively rare on Earth, particularly as hydrous species. They may form as a result of chemical interaction of acidic groundwater with mafic rocks (basalts) under ambient (and cold) conditions or in hydrothermal systems (Tosca et al. 2004). However, elsewhere in our Solar System, sulfur may be a more common and significant element in crustal rocks and thus conditions may be more favorable for the formation of sulfate minerals. This is especially true on Mars, where the low temperatures and pH found in the martian permafrost create ideal conditions for the formation of this group of minerals (Burns 1987), which includes such phases as coquimbite,