Multinuclear NMR study of Cs-bearing geyserites of the Targejia hot spring cesium deposit in Tibet

BING ZHOU,^{1,2,*} ERFENG REN,² BARBARA L. SHERRIFF,³ AND YEFENG YAO^{4,*}

¹College of Materials Science and Engineering, Tongji University, Shanghai 201804, China
²Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China
³Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
⁴Physics Department and Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, China

ABSTRACT

The large scale Targejia hot spring type Cs deposit in Tibet is unique and still active today with the distribution of hot springs being controlled by tectonic movements of the Tibetan Plateau. The ore bodies of the Targejia Cs deposit are mainly composed of geyserite, a Cs-containing opal. In this study, a combination of X-ray diffraction, infrared spectroscopy, and ²⁹Si, ¹H, ¹³³Cs magic angle spinning nuclear magnetic resonance (MAS NMR) were used to study the location and mobilization of Cs in geyserites. ²⁹Si NMR spectra indicate that the relative amounts of Q², Q³, and Q⁴ species vary in geyserite samples of different mineralization stages. Based on the ¹³³Cs chemical shift as well as the change in ²⁹Si chemical shift ranges (especially for Q²), cesium is inferred to associate with Q³ and Q² silanol groups, where it is coordinated by O^{2–}, OH[–], and H₂O as a network modifying cation. As Cs-bearing geyserite ages and dehydrates, Q² and Q³ polymerize giving an increase in Q⁴. This is accompanied with a decrease in Cs content indicating that Cs may be leached out from the opals as it loses its original coordination environment in the silicate framework.

Keywords: Cs-bearing geyserite deposits, Tibet, ²⁹Si, ¹³³Cs, ¹H MAS NMR, IR, silanol groups, mineralization