Oxy-schorl, Na(Fe3+Al)\textsubscript{6}Si\textsubscript{6}O\textsubscript{18}(BO\textsubscript{3})\textsubscript{3}(OH)\textsubscript{3}O, a new mineral from Zlatá Idka, Slovak Republic and Přibyslavice, Czech Republic

PETER BAČÍK,1,* JAN CEMPIŘEK,2,3 PAVEL UHER,1 MILAN NOVÁK,4 DANIEL OZDÍN,1 JAN FILIP,5 RADEK ŠKODA,4 KAREL BREITER,6 MARIANA KLEMENTOVÁ,7 RUDOLF ŇUĎA,8 and LEE A. GROAT3

1Department of Mineralogy and Petrology, Comenius University, Mlynská dolina, 842 15 Bratislava, Slovakia
2Department of Mineralogy and Petrography, Moravian Museum, Zelný trh 6, 659 37 Brno, Czech Republic
3Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia V6T 164, Canada
4Department of Geological Sciences, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
5Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
6Geological Institute of the Academy of Science of Czech Republic, v.v.i., Rozvojová 269, 165 00 Praha 6, Czech Republic
7Institute of Physics of the AS CR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic
8Bystrická 87, 040 11 Košice, Slovakia

ABSTRACT

Oxy-schorl (IMA 2011-011), ideally Na(Fe3+Al)\textsubscript{6}Si\textsubscript{6}O\textsubscript{18}(BO\textsubscript{3})\textsubscript{3}(OH)\textsubscript{3}O, a new mineral species of the tourmaline supergroup, is described. In Zlatá Idka, Slovak Republic (type locality), fan-shaped aggregates of greenish black acicular crystals ranging up to 2 cm in size, forming aggregates up to 3.5 cm thick were found in extensively metasomatically altered metarhyolite pyroclastics with Qtz+Ab+Ms. In Přibyslavice, Czech Republic (co-type locality), abundant brownish black subhedral, columnar crystals of oxy-schorl, up to 1 cm in size, arranged in thin layers, or irregular clusters up to 5 cm in diameter, occur in a foliated muscovite-tourmaline orthogneiss associated with KFs+Ab+Qtz+Ms+Bi+Grt.

Oxy-schorl from both localities has a Mohs hardness of 7 with no observable cleavage and parting. The measured and calculated densities are 3.17(2) and 3.208 g/cm3 (Zlatá Idka) and 3.19(1) and 3.198 g/cm3 (Přibyslavice), respectively. In plane-polarized light, oxy-schorl is pleochroic; O = green to bluish-green, E = pale yellowish to nearly colorless (Zlatá Idka) and O = dark grayish-green, E = pale brown (Přibyslavice), uniaxial negative, ω = 1.663(2), ε = 1.641(2) (Zlatá Idka) and ω = 1.662(2), ε = 1.637(2) (Přibyslavice). Oxy-schorl is trigonal, space group R3\textit{m}, Z = 3, a = 15.916(3) Å, c = 7.107(1) Å, V = 1559.1(4) Å3 (Zlatá Idka) and a = 15.985(1) Å, c = 7.154(1) Å, V = 1583.1(2) Å3 (Přibyslavice). The composition (average of 5 electron microprobe analyses from Zlatá Idka and 5 from Přibyslavice) is (in wt%): SiO\textsubscript{2} 33.85 (34.57), TiO\textsubscript{2} <0.02 (0.03), F 0.26 (0.56), Cl 0.01 (<0.01), B 0.190 (0.305), Ca 0.078 (0.115), Mg 0.006 (0.009), Na 1.67 (1.76), K\textsubscript{2}O <0.02 (0.03), F 0.26 (0.56), Cl 0.01 (<0.01), B\textsubscript{2}O\textsubscript{3} (calc.) 0.50 (0.55), H\textsubscript{2}O (from the crystal-structure refinement) 2.92 (2.72), sum 99.29 (98.41) for Zlatá Idka and 3.19(1) and 3.198 g/cm3 (Přibyslavice), respectively. A combination of EMPA, Mössbauer spectroscopy, and crystal-structure refinement yields empirical formulas (Na\textsubscript{0.95}Ca\textsubscript{0.10}Al\textsubscript{0.30}Si\textsubscript{0.62}O\textsubscript{1.15}F\textsubscript{0.30}OH\textsubscript{0.03} for Zlatá Idka and Na\textsubscript{0.96}Ca\textsubscript{0.04}Si\textsubscript{0.30}O\textsubscript{1.30}F\textsubscript{0.30}OH\textsubscript{0.03} for Přibyslavice). Oxy-schorl is derived from schorl end-member by the AlOFe\textsubscript{2}+(BO\textsubscript{3})\textsubscript{3}OH\textsubscript{3}O substitution. The studied crystals of oxy-schorl represent two distinct ordering mechanisms: disorder of R2+ and R3+ cations in octahedral sites and all O ordered in the W site (Zlatá Idka), and R2+ and R3+ cations ordered in the Y and Z sites and O disordered in the Y and W sites (Přibyslavice).

Keywords: Oxy-schorl, tourmaline-supergroup minerals, new mineral, electron microanalysis, crystal-structure refinement, Přibyslavice, Zlatá Idka

INTRODUCTION

Minerals of the tourmaline-supergroup are common in many geological environments. The complexity of their structure, including a variability of structural sites and chemical composition are manifested in a relatively large number of mineral species (Henry et al. 2011). Oxy-schorl, ideally Na(Fe3+Al)\textsubscript{6}Si\textsubscript{6}O\textsubscript{18}(BO\textsubscript{3})\textsubscript{3}(OH)\textsubscript{3}O, is a new member of the alkali group and oxy-series of the tourmaline supergroup (sensu nomenclature of Henry et al. 2011). The coupled general substitution $\text{R}^{2+}+\text{OH}^{-}\leftrightarrow\text{Al}^{3+}+\text{O}^{-}$ derived from ideal schorl NaFe2+Al\textsubscript{6}Si\textsubscript{6}O\textsubscript{18}(BO\textsubscript{3})\textsubscript{3}OH\textsubscript{3}O and leading to the ideal oxy-schorl was discussed already by Foit and Rosenberg (1977). Povondra (1981), Povondra et al. (1985, 1987), and Foit (1989) published several chemical analyses of tourmalines corresponding to oxy-schorl including samples from the co-type locality Přibyslavice (Povondra et al. 1987). However, the term oxy-schorl was first introduced by Hawthorne and Henry (1999).