LETTER

The crystal structure of bartelkeite, with a revised chemical formula, PbFeGe^{VI}(Ge₂^{IV}O₇) (OH)₂·H₂O, isotypic with high-pressure $P2_1/m$ lawsonite

MARCUS J. ORIGLIERI,¹ HEXIONG YANG,^{1,*} ROBERT T. DOWNS,¹ ESTHER S. POSNER,¹ KENNETH J. DOMANIK,² AND WILLIAM W. PINCH³

¹Department of Geosciences, University of Arizona, Tucson, Arizona 85721-0077 U.S.A. ²Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721-0092 U.S.A. ³19 Stonebridge Lane, Pittsford, New York 14534, U.S.A.

ABSTRACT

Bartelkeite from Tsumeb, Namibia, was originally described by Keller et al. (1981) with the chemical formula PbFeGe₃O₈. By means of electron microprobe analysis, single-crystal X-ray diffraction, and Raman spectroscopy, we examined this mineral from the type locality. Our results show that bartelkeite is monoclinic with space group $P2_1/m$, unit-cell parameters a = 5.8279(2), b = 13.6150(4), c = 6.3097(2) Å, $\beta = 127.314(2)^\circ$, and a revised ideal chemical formula PbFeGe^{VI}Ge^{IV}O₇(OH)₂·H₂O (Z = 2). Most remarkably, bartelkeite is isostructural with the high-pressure $P2_1/m$ phase of lawsonite, CaAl₂Si₂O₇(OH)·H₂O, which is only stable above 8.6 GPa and a potential host for H₂O in subducting slabs. Its structure consists of single chains of edge-sharing FeO₆ and Ge1O₆ octahedra parallel to the *c*-axis, cross-linked by Ge2₂O₇ tetrahedral dimers. The average <Ge-O> bond lengths for the GeO₆ and GeO₄ polyhedra are 1.889 and 1.744 Å, respectively. The Pb atoms and H₂O groups occupy large cavities within the framework. The hydrogen bonding scheme in bartelkeite is similar to that in lawsonite. Bartelkeite represents the first known mineral containing both 4- and 6-coordinated Ge atoms and may serve as an excellent analog for further exploration of the temperature-pressure-composition space of lawsonite.

Keywords: Bartelkeite, germanate, hydrous mineral, crystal structure, X-ray diffraction, Raman spectra