American Mineralogist, Volume 96, pages 1512-1520, 2011

The effect of polymorphic structure on the structural and chemical stability of yttrium disilicates

EVGENY GALUNIN,¹ MIQUEL VIDAL,¹ AND MARÍA D. ALBA^{2,*}

¹Departament de Química Analítica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain ²Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Av. Américo Vespucio 49, 41092, Seville, Spain

ABSTRACT

Under pressure and temperature conditions like those found in deep geological repositories (DGRs), rare-earth cations may react with silicates to form rare-earth disilicates. This study establishes the stability range of yttrium disilicates in response to changes in pH. The α , β , γ , and δ polymorphs of $Y_2Si_2O_7$ were synthesized by the sol-gel process at temperatures between 1100 and 1650 °C and subjected to pH_{stat} leaching tests. By measuring the Y and Si leaching rates and monitoring the transformation of the crystalline and amorphous phases, we showed that yttrium disilicates were stable at pH > 5. At pH < 5, the pH stability sequence was consistent with the temperature-dependent stabilities of $Y_2Si_2O_7$ phases, with the δ polymorph showing the lowest leaching rates. Because rare-earth compounds can be used as a proxy for analogous actinide hosts, the results of this study can be used to predict the performance of engineered barriers in DGR.

Keywords: Yttrium disilicates, sol-gel processes, polymorphism, leaching rate, nuclear applications