Light-induced molecular change in HgI₂·As₄S₄: Evidence by single-crystal X-ray diffraction and Raman spectroscopy

P. BONAZZI,^{1,*} L. BINDI,² M. MUNIZ-MIRANDA,³ L. CHELAZZI,¹ T. RÖDL,⁴ AND A. PFITZNER⁴

¹Dipartimento di Scienze della Terra, Università di Firenze, via La Pira 4, I-50121 Firenze, Italy

²Museo di Storia Naturale, Sezione di Mineralogia, Università di Firenze, via La Pira 4, I-50121 Firenze, Italy

³Dipartimento di Chimica, Università di Firenze, via della Lastruccia, 13 I-50019 Sesto F.no, Firenze, Italy

⁴Institut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, D-93040 Regensburg, Germany

ABSTRACT

To investigate the behavior of the As_4S_4 molecule within a crystal-chemical environment differing from realgar, α -As₄S₄, and its high-temperature polymorph, β -As₄S₄, the effects of the light exposure on the structure of the HgI2 As4S4 adduct have been studied. The structure of this compound consists of a packing of nearly linear HgI₂ molecules and As₄S₄ cage-molecules. A crystal [V = 1295.9(4) Å³] was exposed to filtered polychromatic light (550 nm long-wavelength pass filter). A marked increase of the unit-cell volume as a function of the exposure time was observed up to V = 1338.9 Å³ at 3060 min of exposure. Structure refinements indicated that the increase of the unit-cell volume is to ascribe to the formation of an increasing fraction (up to 59%) of pararealgar replacing the realgar-type molecule. After this point, further light-exposure did not cause any further increase of the lattice parameters. On the contrary, a slow, continuous decrease of the unit-cell volume down to 1292.9 Å³ occurred by keeping the crystal in the dark (39 days). The "reverse" evolution of the unit-cell parameters in the dark almost overlap that observed during the light-induced process and the structural model obtained after the "dark stage" was found to be identical to that of the unaltered crystal, although the diffraction quality was lower and powder-like diffraction rings were observed together with single-crystal reflections. Apart from few peaks belonging to the original unaltered HgI₂·As₄S₄ adduct, most of the collected peaks can be assigned to β -As₄S₄. This feature could indicate decomposition into micro-crystalline β -As₄S₄ and HgI₂; no diffraction effect ascribable to any HgI₂ phase, however, was observed. Micro-Raman spectra were collected on crystals exposed to the above-mentioned wavelength light for increasing times (up to 3000 min). The peak at $274(\pm 1)$ cm⁻¹ whose intensity increases as a function of the exposure time confirms the transition from a realgar- to a pararealgar-type molecule in the HgI₂ As_4S_4 adduct.

Keywords: Crystal structure, $HgI_2 \cdot As_4S_4$, Raman spectroscopy, arsenic sulfides, light-induced alteration, realgar, pararealgar