Silicon coordination in rutile and TiO$_2$-II at ambient and high pressures: Si-29 NMR

JED L. MOSENFELDER, 1 NAMJUN KIM, 2 AND JONATHAN F. STEBBINS 1,*

1Division of Geological and Planetary Sciences, California Institute of Technology, M/C 170-25, Pasadena, California 91125-2500, U.S.A.
2Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305, U.S.A.

ABSTRACT

The structural environment of silicon dissolved in rutile and α-PbO$_2$-structured TiO$_2$ (TiO$_2$-II) was probed using 29Si MAS NMR on 29Si-enriched samples. At 1 atm, about 0.01 wt% SiO$_2$ is incorporated into TiO$_2$ as 29Si, presumably in interstitial sites. Rutile recovered from 6 GPa, 1600 °C contains about 0.6 wt% SiO$_2$, incorporated both as 29Si (~90%) and 30Si (~10%). TiO$_2$-II, synthesized at 12 GPa, 1200 °C, contains only 30Si. The chemical shift for 30Si in TiO$_2$-II is slightly less negative than that for rutile, and the peak is split, suggesting either a more complex mechanism of substitution or a different response to quenching or decompression in the lower-symmetry structure. Future thermodynamic studies of the TiO$_2$-SiO$_2$ solid solution will have to take into account the mixed coordination environment of the Si in TiO$_2$ at low pressures.

Keywords: Crystal structure, rutile, TiO$_2$-II, high-pressure studies, NMR spectroscopy

INTRODUCTION

The solubility of SiO$_2$ in the various polymorphs of TiO$_2$, and the mechanism of incorporation of the dissolved Si, are of interest both for high-pressure petrology and for technological materials. The fact that stishovite (stable above about 9 GPa at mantle temperatures) is isostructural with rutile suggests that there should be significant solid solution at high pressures, which could in principle be used as a geothermobarometer (Stebbins 1992; Vinograd et al. 2008; Ren et al. 2009). At least at lower pressures, where the stable silica polymorph is coesite or quartz, there could be a strong pressure effect on solubility, given the expected large negative molar volume change on transition from tetrahedral (16Si) to octahedral (18Si) silicon coordination. Such an effect can be seen in the study of Gaetani et al. (2008) on rutile solubility in silicate melts; their data on SiO$_2$ concentrations in the rutile coexisting with rhyodacitic or haplobasaltic melts (Fig. 1) reveal a systematic increase from about 0.06 to 0.3 wt% SiO$_2$ with pressure increasing from 1 atm to 3.5 GPa. This raises the possibility that Si in rutile could be used as a “probe” to estimate the amount of 18Si in high-pressure melts, if the thermodynamics and structure of the substitution were well constrained.

Reports of high concentrations of Si in natural rutiles are scant in the literature. A comprehensive survey of rutiles from high (>1 GPa) to ultra-high pressure (UHP) (up to 4.5 GPa) rocks by Zack et al. (2004) yielded typical concentrations of only ~100 wt ppm, with a maximum of 929 ppm, as measured by laser-ablation ICP-MS. On the other hand, Schulze (1990) reported SiO$_2$ contents of 0.25–0.29 wt% for massive rutile in nodules from the Kamfersdam and Kimberley kimberlite pipes in South Africa. Mposkos and Kostopoulos (2001) measured 0.43 wt% SiO$_2$ in a rutile inclusion in garnet from the Rhodope UHP province in Greece. Finally—and most spectacularly—Yang et al. (2003) measured concentrations of 11–15 wt% SiO$_2$ in rutile from a chromitite in the Luobusa ophiolite in Tibet, apparently metamorphosed under UHP conditions (Yang et al. 2007).

This last report motivated an experimental study of Si solubility in TiO$_2$ as a function of pressure and temperature (Ren et al. 2009). The experiments were conducted in the stability fields of rutile and its high-pressure polymorph, α-PbO$_2$-structured TiO$_2$ (or TiO$_2$-II), and possibly even into the stability field of the still higher-pressure baddeleyite-structured polymorph. These authors found SiO$_2$ contents in TiO$_2$—coexisting with coesite or stishovite—ranging from a few tenths of 1 wt% at 1500 °C to a maximum of about 5 wt% at 2000 °C and 23 GPa.

![Figure 1](image-url) SiO$_2$ content of rutile coexisting with rhyodacitic melt (closed circles) or haplobasaltic melt (open squares) at 1350 °C, from experiments of Gaetani et al. (2008), showing systematic increase with pressure.

* E-mail: stebbins@stanford.edu