Fe3+ spin transition in CaFe\textsubscript{2}O\textsubscript{4} at high pressure

MARCO MERLINI,1,2,* MICHAEL HANFLAND,1 MAURO GEMMI,2 SIMO HUOTARI,1 LAURA SIMONELLI,1 AND PIERRE STROBEL3

1ESRF—European Synchrotron Radiation Facility, 6 rue Jules Horowitz, BP220, 38043 Grenoble CEDEX, France
2Dipartimento di Scienze della Terra, Università degli Studi di Milano, Via Botticelli 23, 20133 Milano, Italy
3Institut Néel, CNRS and Université Joseph Fourier, BP166, 38042 Grenoble Cedex 9, France

ABSTRACT

Single-crystal diffraction data collected for CaFe\textsubscript{2}O\textsubscript{4} at high pressure reveal above 50 GPa an isosymmetric phase transition (i.e., no change in symmetry) marked by a volume decrease of 8.4%. X-ray emission spectroscopic data at ambient and high pressure confirm that the nature of the phase transition is related to the Fe3+ high-spin/low-spin transition. The bulk modulus \(K_0 \) calculated with a Birch Murnaghan EoS (\(K' = 4 \)) is remarkably different \(K_0 = 159(2) \) GPa for CaFe\textsubscript{2}O\textsubscript{4} “high spin” and \(K_0 = 235(10) \) GPa for CaFe\textsubscript{2}O\textsubscript{4} “low spin”). Crystal structure refinements reveal a decrease of 12% of the Fe3+ crystallographic site volume. The geometrical features of the low-spin Fe3+ crystallographic site at high pressure (bond lengths, volume) indicate a relevant decrease of Fe3+-O bond lengths, and the results are in agreement with tabulated values for crystal radii of Fe3+ in high- and low-spin state. The reduced crystal size of Fe3+ in the low-spin state suggest that in lower mantle assemblages, Fe3+ partitioning in crystallographic sites should be strongly affected by the iron spin state.

Keywords: CaFe\textsubscript{2}O\textsubscript{4}, high pressure, spin transition, single crystal

INTRODUCTION

The mineralogical and geophysical interest in the CaFe\textsubscript{2}O\textsubscript{4} structure (\(Pbnm, a = 10.716, \ b = 9.237, \ c = 3.021 \) Å) arises, because at the mantle transition zone the spinel structure is no longer stable and transforms to a CaFe\textsubscript{2}O\textsubscript{4} type structure (i.e., Irifune et al. 1991). The crystal structure of CaFe\textsubscript{2}O\textsubscript{4} consists of hexagonal arrays of oxygen atoms, parallel to \(a-b \) plane, but with only 1/3 of the positions filled. Within the layers, two different sixfold-coordinated cation sites are occupied by Fe, and an eightfold-coordinated site is filled by Ca (Fig. 1). The Ca-ferrite structure (or slightly distorted modifications, such as CaTi\textsubscript{2}O\textsubscript{4} or CaMn\textsubscript{2}O\textsubscript{4} structure) is expected to be stable for all of the \(P \) and \(T \) conditions of the lower mantle. In basaltic compositions (Perrillat et al. 2006), the CaFe\textsubscript{2}O\textsubscript{4} structure is enriched in NaAlSiO\textsubscript{4} component, and coexists with MgSiO\textsubscript{3} perovskite, CaSiO\textsubscript{3} perovskite, stishovite, and the NAL phase (Akaogi et al. 1999; Miura et al. 2000), a Na-Al-Ca- and K-bearing phase. The NAL phase is not stable above 40 GPa and it seems to dissolve into the Ca-ferrite phase. For this reason, Ca-ferrite is a potential geochemical reservoir in the mantle for alkaline and other large cations. The CaFe\textsubscript{2}O\textsubscript{4} structure is also an excellent model structure to investigate the behavior of Fe3+ in oxide structures at lower mantle conditions. Iron is normally present in the high-spin state in terrestrial minerals at ambient conditions, but can transform to a low-spin state at extremely high pressure, the pressure depending on the iron valence state and the particular crystal structure (Cohen et al. 1997). The presence of iron in the low-spin state in lower mantle minerals dramatically changes the thermodynamic properties and the crystal chemistry of oxide and silicate phases. In fact, whereas high-spin Fe3+ is expected to substitute easily for Mg2+ and similar cations, low-spin Fe3+, because of its smaller size, comparable to Al3+, could eventually enter crystallographic sites usually filled by smaller cations, Si4+ in particular. As a consequence, all thermodynamic properties (bulk properties, element partitioning, electric and

* E-mail: marco.merlini@unimi.it

0003-004X/10/0001–200S05.00/DOI: 10.2138/am.2010.3347 200

FIGURE 1. Crystal structure of CaFe\textsubscript{2}O\textsubscript{4}, showing the coordination polyhedra (Fe-O\textsubscript{6}: light gray; Ca-O\textsubscript{8}: dark gray).