Partitioning of calcium, magnesium, and transition metals between olivine and melt governed by the structure of the silicate melt at ambient pressure

BJORN MYSEN*

Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A.

ABSTRACT

Olivine/melt partitioning of the transition metal cations, Fe^{2+} , Mn^{2+} , Co^{2+} , and Ni^{2+} , together with Mg^{2+} and Ca^{2+} , has been examined experimentally as a function of melt composition at ambient pressure. Melt structure was inferred from bulk-chemical composition, existing structural data, and ⁵⁷Fe resonant absorption Mössbauer spectroscopy. Under isothermal conditions, $K_{Dti:Mg0}^{0ivine/melt} = (C_i/C_{Mg})^{0ivine/}$ is an exponential function of melt NBO/T for i = Ca^{2+}, Mn^{2+}, Co^{2+}, and Ni^{2+}. For i = Fe^{2+}, the relationship is parabolic with maximum $K_{DFe^{2+},Mg}^{0ivine/melt}$ values at NBO/T near 1. At constant melt NBO/T, $K_{D(i+Mg)}^{0ivine/melt}$ increases systematically with decreasing cation radius, an effect that is more pronounced the more polymerized the melt. The $K_{D(i+Mg)}^{0ivine/melt}$ is also a positive and linear function of Na/(Na + Ca) of Al-free melts. This latter effect results from changes in Qⁿ-species abundance governed by Na/(Na + Ca) of the melts. The enthalpy of the exchange equilibrium, iolivine + Mg^{melt} = i^{melt} + Mg^{0ivine/}, derived from the temperature-dependence of $K_{D(i+Mg)}^{0ivine/}$ is also a positive function of the ionic radius of the cation. The relationship of enthalpy to

The cations examined in this study are network-modifiers in silicate melts at ambient pressure. The solution behavior of network-modifying cations in melts is governed by the extent of steric hindrance near nonbridging oxygen, which in turn affects the energetics of metal-nonbridging oxygen bonds. Those structure effects, in turn, are related to the type of Q^n -species, their abundance, and on the Al-distribution between the Q^n -species. It is suggested, therefore, that the observed variations of mineral/melt partition coefficients with melt composition can be understood by considering bulk polymerization (NBO/T), the distribution of Al³⁺ among coexisting Qⁿ-species, and the distribution of network-modifying cations among nonbridging in these Qⁿ-species.

Keywords: Element partitioning, spectroscopy, melt structure, Mössbauer