American Mineralogist, Volume 92, pages 695-698, 2007

LETTER

Structural investigation of Mg local environments in silicate glasses by ultra-high field ²⁵Mg 3QMAS NMR spectroscopy

KEIJI SHIMODA,^{1,*} YASUHIRO TOBU,¹ MORIAKI HATAKEYAMA,¹ TAKAHIRO NEMOTO,² AND KOJI SAITO¹

¹Advanced Technology Research Laboratories, Nippon Steel Corporation, 20-1 Shintomi, Futtsu, Chiba 293-8511, Japan ²JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan

ABSTRACT

Structural information on divalent cations such as Mg^{2+} should have important implications for magmatic liquids because of their abundance in the Earth's interior; nevertheless, little is confirmed about their coordination environments. We here apply a ²⁵Mg triple-quantum magic-angle spinning (3QMAS) NMR technique at an ultra-high magnetic field (21.8 T) and successfully show the occurrence of multiple Mg sites in MgSiO₃ glass. We find that these sites are distinguished by the degree of polyhedral distortion, not by the coordination number. The present study concludes that the highly distorted MgO₆ species occur in MgSiO₃ glass, in strong contrast with a recent radial distribution study.

Keywords: Mg local environment, MgSiO₃ glass, ²⁵Mg 3QMAS NMR, ultra-high magnetic field