HRGG sector zoning in metamorphic tourmaline and resultant major and trace-element fractionation

VINCENT J. VAN HINSBERG,1,* JOHN C. SCHUMACHER,1 STUART KEARNS,1 PAUL R.D. MASON,2 AND GERHARD FRANZ3

1Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, BS8 1RJ, Bristol, U.K.
2Faculteit Aardwetenschappen, Universiteit Utrecht, Budapestlaan 4, 3584 CD, Utrecht, The Netherlands
3Fachgebiet Petrologie, Technische Universität Berlin, D 10623 Berlin, Germany

ABSTRACT

A new type of sector zoning, with an hourglass shape, has been identified in metamorphic tourmalines that formed under a wide variety of physical and chemical conditions. The two sectors in the c-direction are not equivalent due to asymmetry in the crystal structure of tourmaline along the c-axis. The c+ sector is characterized by low concentrations of Ti, Ca, Mg, and Na, although Al is high, and has a pale (commonly blue or pale-green) color. Conversely, the c– sector is low in Mg and Al, and high in Ca, Fe, and Ti (the latter two causing the dark-brown color of this sector). The a-sector has intermediate characteristics and probably approximates a sector-free tourmaline. Thin sectioning of these sector-zoned tourmalines perpendicular to the c-axis can produce three types of apparent radial zoning patterns: blue-green cores, dark-brown cores, or no distinct cores. These apparent cores will further vary in relative diameter depending on the sectioning level. Furthermore, “core” boundaries can be straight or ragged depending on whether the relative growth speeds for the different faces was constant or variable. These textures have been used to argue for a prograde or detrital origin of tourmaline cores. However, sector zoning is a more appealing explanation for most of these textures, and can further explain the textural resemblance among metamorphic tourmalines from highly variable bulk-rock composition, metamorphic history, and mineral paragenesis. The sector zoning that is described here develops by preferential uptake of elements on the r growth plane, resulting from a combined effect of differences in surface charge and morphology of this plane in the c+ and c– directions. This leads to the preferential incorporation of more positively charged elements in the c– direction, and a preference for a vacant X-site in the c+ direction. Because the compositional differences among the sectors are pronounced in both major and trace elements and in the same order of magnitude as growth zoning variability, the presence of sector zoning must be established and taken into account when making inferences from tourmaline chemistry.

Keywords: Hourglass, sector zoning, tourmaline, metamorphic rocks, element fractionation

INTRODUCTION

Tourmaline, with the general formula XY3Z6T6O18(BO3)3V3W (Hawthorne and Henry 1999) is the most common B-mineral in metamorphic rocks (Henry and Dutrow 1996), and generally, especially at high grade, its dominant B reservoir. It commonly shows (complex) optical and chemical zoning, which is generally described in terms of core-rim zoning as the customary section used to study this zoning is perpendicular to the long (c) axis. Tourmalines from metamorphic pelites, gneisses, and metabasites seem to be ubiquitously characterized by an abrupt color change from core to rim (Tracy 1982; Henry and Guidotti 1985; Keller et al. 1999; Henry and Dutrow 2001; Kawakami 2001; Nakano and Nakamura 2001; Deksissa and Koeberl 2002; Medaris et al. 2003). Generally, this is either a change from a blue-green core to a green-brown rim or from a dark-brown core to a green-brown rim. These color variations are remarkably constant over a variety of metamorphic conditions, mineral parageneses, and bulk-rock compositions. Electron microprobe analyses have consistently shown that this abrupt change in color is accompanied by strong compositional changes (Tracy 1982; Henry and Guidotti 1985; Keller et al. 1999; Henry and Dutrow 2001; Kawakami 2001; Nakano and Nakamura 2001; Deksissa and Koeberl 2002; Medaris et al. 2003). The compositional variations are generally step-like from core to rim and can be recognized in most major, minor, and trace elements.

In pegmatitic tourmaline, sector zoning is a common phenomenon (e.g., Rustemeyer 2003); however, sector zoning in metamorphic tourmalines is less well documented. Henry et al. (1999) described sector zoning in tourmalines from the cap rock of a salt dome and several authors have reported faceted sector zoning in cross-sections cut perpendicular to the c-axis (Tindle et al. 2002; Torres-Ruiz et al. 2003; Deksissa and Koeberl 2002). Sector zoning is, in fact, a common phenomenon in many metamorphic minerals, such as chloritoid, staurolite, omphacite,