American Mineralogist, Volume 91, pages 1110-1116, 2006

Carbonate reduction by Fe-S-O melts at high pressure and high temperature SARAH C. GUNN AND ROBERT W. LUTH*

C.M. Scarfe Laboratory for Experimental Petrology, Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3 Canada

ABSTRACT

Diamond may form in the Earth's mantle by recrystallization of graphite, by precipitation from a C-bearing fluid, or by reduction of carbonate. The latter mechanism could result from interaction with a reduced fluid or another phase that would accommodate the oxygen produced by the reduction. One possible such phase is a sulfide-bearing melt, given that sulfides are common inclusions in diamond. Experiments at 1300 °C, 6 and 7.5 GPa successfully reduced magnesite in the presence of a eutectic-composition Fe-S-O melt. Although graphite rather than diamond was produced by this reduction, these experiments demonstrate that this mechanism is a viable mechanism for reducing carbonate to carbon in the Earth's mantle.

Keywords: Experimental petrology, high-pressure studies, igneous petrology, crystal synthesis