American Mineralogist, Volume 90, pages 1522-1533, 2005

Effect of A-site cation radius on ordering of BX₆ octahedra in (K,Na)MgF₃ perovskite

C. DAVID MARTIN,^{1,*} SANTANU CHAUDHURI,² CLARE P. GREY,³ AND JOHN B. PARISE^{1,3}

¹Department of Geosciences, State University of New York at Stony Brook, Stony Brook, New York 11794, U.S.A. ²Department of Chemistry and Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA ³Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794, U.S.A.

ABSTRACT

We present a structural model for $(K,Na)MgF_3$ perovskite using results from high-resolution synchrotron X-ray powder diffraction and nuclear magnetic resonance (NMR) spectroscopy. $(K,Na)MgF_3$ perovskite is found to transition from orthorhombic (*Pbnm*) to tetragonal (*P4/mbm*) to cubic (*Pm3m*) as potassium concentration is increased. These phase transitions are not accompanied by a discontinuity in pseudo-cubic unit-cell volume and occur close to compositions ($K_{0.37}Na_{0.63}$)MgF₃ and ($K_{0.47}Na_{0.53}$)MgF₃, respectively. ¹⁹F NMR spectra indicate that the Na⁺ and K⁺ cations do not occupy the A cation site at random and end-member local environments are favored for all compositions. Based on results from both X-ray diffraction and NMR, we propose that diffuse diffraction is the result of strain between coexisting regions of different octahedra (MgF₆) tilts brought about by the ionic radius mismatch of Na⁺ and K⁺ cations. We suggest A-site cations group with like cations as neighbors to reduce excess volume and total strain.