American Mineralogist, Volume 87, pages 347-349, 2002

Monoclinic nearly stoichiometric wüstite at low temperatures

HELMER FJELLVÅG,¹ BJØRN C. HAUBACK,² TOM VOGT,³ AND SVEIN STØLEN^{1,*}

¹Department of Chemistry, University of Oslo, Postbox 1033, N0315 Oslo, Norway

²Institute for Energy Technology, Kjeller, Norway

³Physics Department, 2-21, Building 510B, Brookhaven National Laboratory, Upton, New York 11973-5000, U.S.A.

ABSTRACT

The crystallographic and magnetic structures of Fe_{0.99}O at 10 K have been determined by highresolution neutron powder diffraction. Fe_{0.99}O is found to be monoclinic, space group *C2/m*, with unit-cell dimensions a = 5.2615(1), b = 3.0334(1), c = 3.0602(1) Å, and $\beta = 124.649(2)^{\circ}$. The Fe-O distances in the distorted FeO₆ octahedron are 2.154 Å × 4 and 2.165 Å × 2. The magnetic unit cell is obtained by doubling one of the crystallographic axes, $a (magn) = a_m$, $b (magn) = b_m$, and c (magn) $= 2c_m$. The refined magnetic components at 8 K are $M_x = 2.7(1) \mu$ B, $M_y = -0.9(2) \mu$ B, and $M_z = 4.77(2) \mu$ B, with resultant $M = 4.03(2) \mu$ B.