American Mineralogist, Volume 86, pages 1525–1529, 2001

LETTERS

Elasticity of single-crystal calcite and rhodochrosite by Brillouin spectroscopy

CHIEN-CHIH CHEN,^{1,*} CHUNG-CHERNG LIN,¹ LIN-GUN LIU,¹ STANISLAV V. SINOGEIKIN,² AND JAY D. BASS²

¹Institute of Earth Sciences, Academia Sinica, Nankang, Taipei, Taiwan 115, ROC ²Department of Geology, University of Illinois, Urbana, Illinois 61801, U.S.A.

ABSTRACT

The single-crystal elastic moduli of natural samples of both calcite (CaCO₃) and rhodochrosite (MnCO₃) have been measured by Brillouin spectroscopy under ambient condition. Based on the trigonal unit cell, the elastic constants C_{11} , C_{33} , C_{44} , C_{12} , C_{13} , and C_{14} are 149.4(7), 85.2(18), 34.1(5), 57.9(11), 53.5(9), -20.0(2), and 223.9(15), 132.6(41), 44.5(9), 93.4(21), 76.0(23), -17.3(6) GPa for CaCO₃ and MnCO₃, respectively. Our data for calcite are in good agreement with earlier data obtained by ultrasonic experiments. The off-diagonal elastic constants (C_{12} , C_{13} , and C_{14}) for rhodochrosite have systematically larger values than the trend defined by other isostructural carbonates, in all of which the divalent cations are alkaline-earth metals. This is a distinctive signature of transition–metal-bearing oxides, which is present in silicates and simple oxides as well.