American Mineralogist, Volume 86, pages 927-931, 2001

The crystal structure of aravaipaite

ANTHONY R. KAMPF*

Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, U.S.A.

ABSTRACT

The crystal structure of aravaipaite, Pb₃AlF₉·H₂O, monoclinic, *P*2₁/*n*, *a* = 25.048(4), *b* = 5.8459(8), *c* = 5.6805(7) Å, β = 94.013(3)°, *V* = 829.7(2) Å³, *Z*=4, was solved by direct methods and refined by full-matrix least-squares techniques to *R* = 0.049 for 1170 observed reflections [*F*₀ > 4 σ (*F*₀)] and *R* = 0.089 for all 1820 reflections collected using MoK α X-radiation and a CCD-based detector. The structure of aravaipaite contains a square-packed layer of F atoms on either side of which are bonded Pb atoms in a fluorite (β -PbF₂)-type configuration. This layer parallel to {100} serves as a template to which on both sides are attached AlF₆ octahedra and PbF₆(H₂O)₂ polyhedra. The resulting thick slabs are connected via Pb-O-Pb and Al-F-Pb bonds. The two nonequivalent Pb atoms in the fluoritetype layer are each coordinated to 11 F atoms and exhibit typical lone-pair behavior.

Aravaipaite was originally reported to be triclinic. The structure analysis yielded the new monoclinic cell provided above and required the following revisions in the mineral's description. Morphology: forms {100} and {401}; lamellar on {100}. Twinning: polysynthetic on {100}. Cleavage: {100} perfect micaceous, {011} good, {010} and {001} fair. Density (calc.): 6.703 g/cm³. Optical orientation: X = b; $Z \land a = 24^{\circ}$ in the obtuse angle β . A powder pattern calculated from the structure data is also provided.