^{VIII}(Mg,Fe)_{0.85}^{VI}(Mg,Fe)₄^{IV}(Fe,Ge)₃O₁₂: A new tetragonal phase and its comparison with garnet

DAVID LÉVY AND JACQUES BARBIER*

Department of Chemistry, McMaster University, Hamilton, Ontario, L8S 4M1, Canada

ABSTRACT

Tetragonal Mg_{2.12}Fe_{3.17}Ge_{2.56}O₁₂ is a new germanate forming at 1 atm pressure in the MgO-Fe₂O₃-GeO₂ system. It is an analogue of the high-pressure silicate mineral TAPP occurring as inclusions in diamonds of lower-mantle origin. Its crystal structure was determined by X-ray diffraction using single-crystals grown from a potassium molybdate flux. It crystallizes in the *I*42*d* space group with a = 6.8153(4) Å, c = 18.669(2) Å, Z = 4. The refinement of its cation distribution, ^{VIII}(Mg_{0.52}Fe_{0.33})^{VI}(Mg_{1.60}Fe_{2.40})^{IV}(Ge_{2.56}Fe_{0.44})O₁₂, shows the presence of a partially filled (85%) dodecahedral site characterized by an unusual geometry with two very different bond lengths [2.169 Å (×4) and 2.609 Å (×4)]. The structure determinations of the Ca²⁺- and Y³⁺-substituted phases show that the larger cations are completely partitioned in the dodecahedral site, increasing its occupancy slightly (up to 92% in the case of Ca²⁺).

Cubic $Mg_{2.35}Y_{2.00}Fe_{0.97}Ge_{2.59}O_{12}$ is a new garnet phase forming at 1 atm pressure in the MgO-Y₂O₃-Fe₂O₃-GeO₂ system. Its crystal structure and cation distribution were also determined by singlecrystal X-ray diffraction: ^{VIII}(MgY₂)^{VI}(Mg_{1.35}Fe_{0.56})^{IV}(Ge_{2.59}Fe_{0.41})O₁₂, *Ia*3*d* space group, *a* = 12.232(1) Å, Z = 8. In spite of similarities in their chemical compositions, the tetragonal and garnet phases are structurally distinct, with different ratios of dodecahedral to octahedral sites, viz., ^{VIII}A^{VI}B₄^{IV}T₃O₁₂ and ^{VIII}A₃^{VI}B₂^{IV}T₃O₁₂ respectively. As a consequence, the tetragonal phase forms in systems containing smaller cations, such as Mg²⁺, Fe³⁺, Ni²⁺, Co²⁺, whereas larger cations, such as Y³⁺, show a strong preference for the garnet phase.