Crystal structure of non-metamict Th-rich hellandite-(Ce) from Latium (Italy) and crystal chemistry of the hellandite-group minerals

ROBERTA OBERTI,1,*, LUISA OTTOLINI,1 FERNANDO CAMARA,1,† AND GIANCARLO DELLA VENTURA2

1CNR-CS per la Cristallochimica e la Cristallografia, via Ferrata 1, I-27100 Pavia
2Dipartimento Scienze Geologiche, Università di Roma Tre, largo S. Leonardo Murialdo 1, I-00146 Roma

ABSTRACT

The crystal structure of a Th-U-rich, Y-poor hellandite-(Ce) occurring in a volcanic ejectum from Capranica (Vico volcanic complex, Latium, Italy) was refined to an R index of 1.5% for 2226 observed reflections \(I > 3 \sigma(I) \). Hellandite from Capranica is monoclinic \(P2_1/a \) with \(a = 19.068 (8) \), \(b = 4.745 (2) \), \(c = 10.289 (3) \) Å, \(\beta = 111.18 (3) \). The extra-framework (distorted) tetrahedral cavity, usually occupied by H in hellandite, is partially (35–40%) occupied by Be and/or Li. When this is the case, the \([B_4 Si_4 O_{22}]\) tetrahedral chains of hellandite are locally cross-linked to form a sheet, which is built up by the same types of rings as in semenovite but in a different arrangement. The structure refinement and the electron- and ion-microprobe analyses provide constraints on hellandite-group crystal chemistry. The presence of \([\text{Be, Li}]\) at the Be site is coupled with the substitution of F and/or O for OH at the O5 site; the amount of extra-framework cations thus constrains the OH content in the general formula. X-ray data exclude the presence of other OH sites in the structure, in agreement with direct H determination by ion probe (1.02 H apfu + 0.98 F apfu = 2.0 apfu of monovalent anions at O5 vs. 4.5–8 apfu proposed previously). The complete chemical analysis also eliminates the need for a vacancy at the REE sites. The general formula of hellandite-group minerals is thus \((\text{Ca,REE})_8(\text{Th, U, Y, REE})_4(\text{Ti, Fe}^{3+}, \text{Al})_2(\text{O, F, OH})_4(\text{Be, Li})_{4-\text{x}}\text{Si}_8\text{O}_{44}\), where electroneutrality is assured by the appropriate mixing of heterovalent substituents at the M sites.