Bonding in silicates: Investigation of the Si L_{2,3} edge by parallel electron energy-loss spectroscopy

LAURENCE A.J. GARVIE^{1,*}AND PETER R. BUSECK^{1,2}

¹Department of Geology, Arizona State University, Tempe 85287-1404, U.S.A. ²Department of Chemistry/Biochemistry, Arizona State University, Tempe 85287-1604, U.S.A.

ABSTRACT

The Si $L_{2,3}$ core-loss edge can be used to probe the crystal chemistry around Si, providing information on the s- and d-like partial density of unoccupied states of the Si-O bonds. We present Si $L_{2,3}$ edges from 59 silicates, glasses, and amorphous materials acquired by parallel electron energy-loss spectroscopy (PEELS) with a transmission electron microscope (TEM) at an energy resolution of 0.7 eV. The Si L_{23} edge spectrum of α -quartz is interpreted using the results of a recent pseudopotential band-structure calculation. A combination of Si s- and d-like partial density of states derived from this calculation resembles the Si L_{23} energy-loss near-edge structure (ELNES) of α -quartz. The Si L_{23} ELNES of the silicates are interpreted using the results of the band-structure calculation of α -quartz. The Si L_{2,3} edges of O⁴, O³, O², some Q¹ silicates, and amorphous materials have ELNES similar to that of α -quartz, and the Q⁰ and some Q^1 silicates have ELNES different from that of α -quartz. A "coordination fingerprint" is defined for Q^4 , O^3 , and O^2 Si L₂₃ ELNES because of their similarity to the α -quartz spectrum. The similarities between the $L_{2,3}$ core-loss edge shapes of the third-row XO_4^{n-} (X = Al, Si, S, and P) series attests to a common molecular–orbital picture of their bonding. For Q^0 and some Q^1 spectra a "structure fingerprint" is defined because the Si $L_{2,3}$ -edge shapes are indicative of the number, distribution, and nature of the non-nearestneighbor atoms. Spectra of olivine glasses and metamict zircon more closely resemble the α -quartz spectrum than their crystalline analogs. In contrast to previous studies, we show that distortion of the SiO_4 tetrahedron is of secondary importance as an ELNES-modifying parameter. Polyhedral distortions become less important with increase in polymerization. There is a positive linear correlation between the energies of the Si $L_{2,3}$ -edge onsets and polymerization, Si 2p and 2s binding energies, and the ²⁹Si NMR isotropic chemical shifts. The shift to higher energies of the edge onsets with polymerization corresponds to an increase in effective charge on the Si atom with higher Q^n . For silicates with isolated SiO₄ tetrahedra, increases in L_{2.3}-energy onsets correlate with increases in polarizing power of the next-nearest-neighbor cations. The Si L_{23} -edge shapes are affected by the types and coordinations of the next-nearest-neighbor cations. For example, and radite, ilvaite, fayalite, and γ -Fe₂SiO₄ have FeO₆ bonded to SiO₄ and exhibit similar ELNES. Topaz, dumortierite, staurolite, and kyanite have similar Si L_{2.3} ELNES, with AlO₆ bonded to the SiO₄. Their edge shapes are distinct from those of silicates with SiO₄ bonded to AlO₄, as in the feldspars. A comparison of the Al and Si L₂₃ and Al, Si, O, and F K core-loss edges of topaz illustrates the influence of neighbor effects and mixing of unoccupied states. This mixing illustrates the limitations of ab initio methods that model core-loss edges that neglect non-nearest-neighbor interactions.