Ca-Sr distribution among amphibole, clinopyroxene, and chloride-bearing solutions

J. NAJORKA,¹ M. GOTTSCHALK,^{1,*} G. FRANZ,² AND W. HEINRICH¹

¹GeoForschungsZentrum Potsdam, Telegrafenberg A17, Potsdam 14473, Germany ²FG Petrologie, Technische Universität Berlin, Strasse des 17. Juni 135, Berlin 10623, Germany

ABSTRACT

The distribution of Sr between a 1 M (Ca,Sr)Cl₂ solution, (Ca,Sr)-tremolite and (Ca,Sr)-diopside was determined at 750 °C and 200 MPa. The synthesized crystals of (Ca,Sr)-tremolite (2000×30 μ m) and (Ca,Sr)-diopside (1500 × 20 μ m) were large enough for accurate electron microprobe analysis. The experimental results indicate that Ca^{2+} can be replaced completely by Sr^{2+} on the M4-site in tremolite and on the M2-site in diopside. The compositions of the product fluid were analyzed by atomic absorption spectroscopy. In both the (Ca,Sr)-tremolite-fluid and (Ca,Sr)-diopside-fluid systems, Sr strongly fractionated into the fluid. For bulk compositions having low Sr concentrations, mineral/fluid partition coefficients, D_{sci}meral/fluid, of 0.045 for (Ca,Sr)-tremolite/fluid and 0.082 for (Ca,Sr)diopside/fluid were derived. The experimental results were evaluated thermodynamically assuming Henry's law and simple mixing properties for SrCl₂ and CaCl₂ in the fluid. The mixing energies of the solids were calculated using a regular solution model. In the (Ca,Sr)-tremolite-(Ca,Sr)Cl₂ system, $\Delta\mu^{\circ}$ is 59.0 kJ and $W_{\text{cos}}^{\text{suph}} = 9.8$ kJ. In the system (Ca,Sr)-diopside–(Ca,Sr)Cl₂ $\Delta\mu^{\circ}$ is 30.8 kJ and $W_{\text{cos}}^{\text{par}}$ is 11.7 kJ. The high $\Delta \mu^{\circ}$ values and, to a much lesser extent, the W_{casr} values cause the strong fractionation of Sr into the fluid. The moderate values for W_{css}^{amph} and W_{css}^{px} strongly suggest that complete solid solution exists for (Ca,Sr)-tremolite and (Ca,Sr)-diopside at experimental run conditions. However, for the (Ca,Sr)-tremolite and (Ca,Sr)-diopside joins, limited miscibilities were calculated below 316 and 430 °C, respectively.

The experimentally derived thermodynamic properties were used to determine Ca/Sr ratios of Srrich metasomatic fluids that penetrated a metaeclogite in Bjørkedalen, southwest Norway. The derived Ca/Sr ratios from amphibole-fluid equilibria are in good agreement with those calculated from plagioclase-fluid equilibria.