Boralsilite (Al$_{16}$B$_6$Si$_2$O$_{37}$): A new mineral related to sillimanite from pegmatites in granulite-facies rocks

EDWARD S. GREW,1,* JAMES J. MCGEE,2 MARTIN G. YATES,1 DONALD R. PEACOR,3 ROLAND C. ROUSE,3 JOEP P.P. HUIJSMANS,4 CHARLES K. SHEARER,5 MICHAEL WIEDENBECK,6 DOUGLAS E. THOST,7 AND SHU-CHUN SU8

1Department of Geological Sciences, University of Maine, Orono, Maine 04469, U.S.A.
2Department of Geological Sciences, University of South Carolina, Columbia, South Carolina 29208, U.S.A.
3Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
4Netherlands Energy Research Foundation, P.O. Box 1, NL 1755 ZG Petten, The Netherlands
5Institute of Meteoritics, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A.
6Advanced Materials Laboratory, University of New Mexico, Albuquerque, New Mexico 87106, U.S.A.
7Australian Geological Survey Organization, G.P.O. Box 378, Canberra A.C.T., Australia
8Hercules Research Center, 500 Hercules Road, Wilmington, Delaware 19808, U.S.A.

ABSTRACT

Boralsilite, the first natural anhydrous Al-B-silicate, is a high-temperature phase in pegmatites cutting granulite-facies metapelitic rocks at Larsemann Hills, Prydz Bay, east Antarctica (type locality) and Almgjotheii in the contact aureole of the Rogaland Intrusive Complex, southwestern Norway. Stable assemblages include: (1) quartz-potassium feldspar-boralsilite-schorl/dravite (Larsemann Hills); (2) potassium feldspar-plagioclase(An$_{22}$)-boralsilite-werdingite-dumortierite-grandidierite (Almgjotheii); (3) quartz-potassium feldspar-boralsilite-dumortierite-andalusite ± sillimanite (Almgjotheii). Boralsilite is estimated to have formed between 600 and 750 °C and 3–5 kbar at conditions where $P_{H_2O} < P_{H_4SiO_4}$. The name is from the composition, boron, aluminum, and silicron. Representative electron and ion microprobe (SIMS) analyses of Larsemann Hills are: SiO$_2$ 10.05 [12.67]; Al$_2$O$_3$ 71.23 [69.15]; FeO 0.48 [1.10]; MgO below detection [0.23]; BeO 0.004 [0.094]; B$_2$O$_3$ 19.63 [18.11] wt%, totals 101.39 [101.35] wt% where the numbers in brackets were determined from Almgjotheii material. However, the SIMS B$_2$O$_3$ values appear to be systematically too high; boron contents calculated assuming B + Si = 8 and O = 37 atoms per formula unit (apfu) yield B$_{O,apfu}$ 18.53 wt% corresponding to Fe$_{10}$Al$_{15.0}$Be$_{0.6}$Si$_{1.9}$O$_{37}$, ideally Al$_{16}$B$_6$Si$_2$O$_{37}$ for Larsemann Hills. The analogous composition of M$_{O,apfu}$Fe$_{0.19}$Al$_{15.0}$Be$_{0.0}$Si$_{1.9}$Si$_{0.165}$O$_{37}$ for Almgjotheii appears to result from solid solution of boralsilite with sillimanite (or Al$_{15}$B$_6$Si$_2$O$_{37}$) and subordinate werdingite. Boralsilite forms prisms up to 2 mm long $|b|$ and 0.25 mm across and is commonly euhedral in cross section. It is colorless and prismatic cleavage is fair. Optically, it is biaxial ($\alpha = 1.629(1)$, $\beta = 1.640(1)$, $\gamma = 1.654(1)$), $2V_{\text{calc}} = 81.8$ (6), $r > v$ extremely weak, and $\gamma // b$. It is monoclinic, space group C2/m with lattice parameters for Larsemann Hills of $a = 14.767(1)$, $b = 5.574(1)$, $c = 15.079$ (1) Å, $\beta = 91.96(1)^\circ$, $V = 1240.4$ (2) Å3, $Z = 2$, and $D_{\text{calc}} = 3.07$ g/cm3.

INTRODUCTION

The discovery of boralsilite began with the description and analysis of Huijsmans (1981) and Huijsmans et al. (1982) of an unknown columnar mineral from the Almgjotheii pegmatite. Subsequent study showed the unknown mineral to consist of two distinct minerals (Grew 1996): werdingite, from which Huijsmans’s (1981) anal-