Bamfordite, Fe³⁺Mo₂O₆(OH)₃·H₂O, a new hydrated iron molybdenum oxyhydroxide from Queensland, Australia: Description and crystal chemistry

WILLIAM D. BIRCH,¹ ALLAN PRING,² E. MAUDE MCBRIAR,² BRYAN M. GATEHOUSE,³ AND CATHERINE A. MCCAMMON⁴

¹Department of Mineralogy, Museum of Victoria, 328 Swanston Street, Melbourne, 3000, Victoria, Australia ²Department of Mineralogy, South Australian Museum, North Terrace, Adelaide, 5000, South Australia ³Department of Chemistry, Monash University, Clayton, 3168, Victoria, Australia ⁴Bayerisches Geoinstutit, Universität Bayreuth, 95440 Bayreuth, Germany

Abstract

Bamfordite from the abandoned W-Mo-Bi mines at Bamford, Queensland, Australia, is a new hydrated iron molybdate with a unique structure. This mineral formed by oxidation of molybdenite, MoS_2 , in the presence of strongly acidic solutions. It occurs as microcrystalline aggregates of tabular triclinic crystals between 0.005 and 0.05 mm long. The aggregates are apple-green with an earthy luster and greenish yellow streak. Crystals are transparent, with pale to moderate yellow-green pleochroism. They show principal forms {001}, {100}, {010}, {110}, {110}, {110}, and prominent (100) cleavage traces. The Mohs hardness is 2-3 and the measured density is 3.620 g/cm³ (calculated density is 3.616 g/cm³). Crystals are biaxial negative and length slow, with RIs of $\alpha = 1.91$, $\beta = 2.03$, and $\gamma =$ 2.11, and $2V \approx 90^\circ$. Chemical analysis yielded an empirical formula of Fe⁺_{1,0} Mo_{2.01}W_{0.03} $P_{0.02}O_{10}H_{4.62}$, calculated on the basis of ten O atoms. The simplified formula is Fe³⁺Mo₂O₆ (OH)₃·H₂O, chosen on the basis of crystal-structure determination and Mössbauer spectroscopy results. Unit-cell parameters calculated both from the X-ray powder and singlecrystal diffraction data are a = 5.889(5), b = 7.545(5), c = 9.419(5) Å; $\alpha = 71.46(4)^{\circ}, \beta$ = 83.42(4)°, $\gamma = 72.78(4)°$; V = 378.9(4) Å³; Z = 2; P1 or P1. The crystal structure was solved in P1 using direct methods and Fourier techniques. The final refinement based on 1486 observed reflections $[I > 2.00 \sigma I]$ converged to R = 0.05 and $R_w = 0.038$. The bamfordite crystal structure contains groups of four MoO_6 octahedra, linked by edgesharing, which in turn are linked through corner-sharing to pairs of FeO_6 octahedra thereby forming infinite sheets parallel to (100). These sheets are stepped and linked by hydrogen bonding. No other molybdenum oxides have this or a similar structure, instead molybdates such as wulfenite, PbMoO₄, are based on tetrahedrally coordinated molybdenum.