The effects of oxygen fugacity and sulfur on the pressure of vapor-saturation of magma

ERY C. HUGHES^{1,2,*,}, PHILIPPA LIGGINS³, LEE SAPER^{2,4}, AND EDWARD M. STOLPER^{2,†}

¹Te Pū Ao|GNS Science, National Isotope Centre/Avalon, Lower Hutt 5010, Aotearoa New Zealand

²Division of Geological and Planetary Sciences, Caltech, California 91125, U.S.A.

³Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, U.K.

⁴School of GeoSciences, University of Edinburgh, Edinburgh EH9 3FE, U.K.

ABSTRACT

Geobarometers are commonly used to determine the pressure (and hence depth) of magmatic bodies. For instance, at equilibrium, the concentration of dissolved volatiles in a vapor-saturated melt can be used as a barometer: this is the pressure of vapor-saturation (P_{sat}^v). Most determinations of P_{sat}^v assume that melt and vapor contain only oxidized C-O-H species. However, sulfur is the third most abundant volatile element in magmas, and oxygen fugacity (f_{02}) exerts a strong influence on the speciation of the melt and vapor. To explore how S and f_{02} affect calculations of P_{sat}^v , we model a Hawaiian tholeiite that contains both reduced and oxidized C-O-H-S species in the melt and vapor. We find that excluding reduced C-O-H species in the system can result in significant underestimations of P_{sat}^v under reducing conditions (Δ FMQ < 0). The effect of S on P_{sat}^v is small except in the vicinity of the "sulfur solubility minimum" (SS^{min}; $0 < \Delta$ FMQ < +2), where excluding S-bearing species can result in underestimates of P_{sat}^v .

The implications of these results depend on the volatile concentration of the system being investigated, its f_{O_2} , and the melt composition and temperature. Our results suggest there will be little impact on P_{sat}^v calculated for mid-ocean ridge basalts because their f_{O_2} is above where reduced C-O-H species become important in the melt and vapor and yet below the SS^{min}. However, the f_{O_2} of ocean island and arc basalts are close enough to the SS^{min} and their S concentrations high enough to influence P_{sat}^v . However, high-CO₂ and high-H₂O concentrations are predicted to reduce the effect of the SS^{min}. Hence, P_{sat}^v calculated for shallowly trapped melt inclusions and matrix glass are more affected by the SS^{min} than deeply trapped melt inclusions. Lunar and martian magmas are typically more reduced than terrestrial magmas, and therefore accurate P_{sat}^v calculations for them require the inclusion of reduced C-O-H species.

Keywords: Pressure of vapor saturation, thermodynamics, oxygen fugacity, carbon, hydrogen, sulfur; Experimental Halogens in honor of James Webster