Formation of amphibole lamellae in mantle pyroxene by fluid-mediated metasomatism: A focal plane array FTIR study from the Carpathian-Pannonian region

Nóra Liptai1,2,*, Thomas P. Lange1,3,4, Levente Patkó1,2, László E. Aradi3,†, Mátra Berkesi1,2, Peter M.E. Tollan5,‡, José Alberto Padrón-Nava6,7, Jörg Hermann8, Szilveszter Gergely8, Csaba Szabó2,3, and István J. Kovács1,2

1MTA Fl Lendület Pannon LithOsc Research Group, Institute of Earth Physics and Space Science, 9400 Sopron, Hungary
2Institute of Earth Physics and Space Science, 9400 Sopron, Hungary
3Institut für Geologie, Universität Bern, 3012 Bern, Switzerland
4Instituto Andaluz de Ciencias de la Tierra, CSIC—University of Granada, 18100 Armilla, Spain
5Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, 1111 Budapest, Hungary
6Géosciences Montpellier, CNRS-Université de Montpellier et Université des Antilles, 34090 Montpellier, France
7Department of Earth Sciences, University of Montpellier, 34090 Montpellier, France
8Doctoral School of Environmental Sciences, Eötvös Loránd University, 1117 Budapest, Hungary

ABSTRACT

Amphiboles in the upper mantle (most frequently pargasitic in composition) have recently gained attention due to their role in the water budget and potential control on the rheology and physical discontinuity of layers of the mantle. Although nominally anhydrous minerals are often analyzed with Fourier transform infrared (FTIR) spectroscopy, amphiboles, especially in natural samples, are only rarely the focus of such studies because of their complex structure and variable composition. In mantle xenoliths, amphibole occurs not only interstitially or forming veins, but also as lamellae within orthopyroxene and/or clinopyroxene grains. The genesis of such lamellae is often ambiguous, as they could either be metamorphic products, or form by exsolution without an external H2O source upon decreasing P-T conditions and consequent destabilization of hydrous point defects in the host pyroxene. To constrain the origin of amphibole lamellae in pyroxenes, we studied mantle xenoliths from the Carpathian-Pannonian region (CPR) by applying hyperspectral imaging using an FTIR equipped with focal plane array (FPA) detector. Amphibole lamellae are absent in xenoliths of the central part of the CPR, but appear in those from the marginal localities that represent a well-hydrated supra-subduction mantle environment. Some of the lamella-hosting pyroxene grains are in contact with interstitial amphibole, suggesting that the formation of the lamellae is related to the amphibole-producing metasomatism; however, others have no adjacent amphibole. To determine the origin of the amphibole lamellae in pyroxenes without neighboring amphibole, hyperspectral images were used to give an estimation of their volume proportion (0.8–5.1 vol%) in the pyroxenes. Using these volume proportions, we calculated that a bulk water content of ~330–670 (orthopyroxene) and ~740–1430 (clinopyroxene) wt. ppm is needed to be contained in the host grain to be able to facilitate subsolidus exsolution of the observed amount of amphibole lamellae. These water contents are, however, too high for mantle pyroxenes, even for an aqueous-fluid saturated upper mantle. This suggests that the formation of amphibole lamellae is related to a metasomatic event with fluid input from an external water source (e.g., melt/fluid inclusion or metasomatic agent on the grain boundary).

Keywords: Amphibole lamellae, upper mantle xenolith, Fourier transform infrared spectroscopy, fluid metasomatism, hyperspectral imaging, mantle water content

INTRODUCTION

Amphibole has a wide compositional range (e.g., Hawthorne et al. 2012) and therefore can be stable in various pressure-temperature conditions in crustal and upper mantle environments. In the upper mantle, amphibole dominantly has a pargasitic composition, NaCa(Mg,Al)[(SiAl)O2](OH)2 (Hawthorne et al. 2012), and it is stable up to ~3 GPa and ~1050–1150 °C (Kushiro 1970; Green 1973; Dawson and Smith 1982; Niida and Green 1999) depending on the composition (Wallace and Green 1991; Mandler and Grove 2016) and bulk H2O content (Green et al. 2010; Green 2015) of the ambient mantle. The significance of pargasitic amphibole lies in the fact that it contains up to ~2 wt% of structurally bound water (as OH−), making it one of the most significant hosts of H2O (besides phlogopite and humite group minerals) in the upper mantle. Olivine, pyroxenes, and garnet, the most modally abundant mantle minerals, are, on the other hand, all nominally anhydrous, incorporating <10 to hundreds of wt. ppm structurally bound hydroxyl (expressed as H2O and also commonly referred to as water), i.e., significantly less than amphibole (e.g., Peslier