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Abstract
Minerals are information-rich materials that offer researchers a glimpse into the evolution of plan-

etary bodies. Thus, it is important to extract, analyze, and interpret this abundance of information to 
improve our understanding of the planetary bodies in our solar system and the role our planet’s geosphere 
played in the origin and evolution of life. Over the past several decades, data-driven efforts in mineralogy 
have seen a gradual increase. The development and application of data science and analytics methods 
to mineralogy, while extremely promising, has also been somewhat ad hoc in nature. To systematize 
and synthesize the direction of these efforts, we introduce the concept of “Mineral Informatics,” which 
is the next frontier for researchers working with mineral data. In this paper, we present our vision for 
Mineral Informatics and the X-Informatics underpinnings that led to its conception, as well as the 
needs, challenges, opportunities, and future directions of the field. The intention of this paper is not to 
create a new specific field or a sub-field as a separate silo, but to document the needs of researchers 
studying minerals in various contexts and fields of study, to demonstrate how the systemization and 
enhanced access to mineralogical data will increase cross- and interdisciplinary studies, and how data 
science and informatics methods are a key next step in integrative mineralogical studies.
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Introduction
The potential for data-driven methods to make novel, unin-

tuitive, and groundbreaking discoveries in Earth and planetary 
science research will only grow as the volume and variety of 
data increases with time. Mineralogy, in particular, is ripe for 
the application of data-driven methods. Minerals form as a result 
of their unique chemical and physical conditions and, in the 
process, retain information regarding their formation that offers 
an opportunity to study the complex geologic and biologic past 
of planetary bodies (Prabhu et al. 2021b).

Mineralogy has been the subject of scientific curiosity and 
study for millennia (Agricola and Bandy 1955; Needham and 
Wang 1995; Bandy and Bandy 2004). In addition to their roles 
as captivating specimens for collection and study, minerals and 
their ores are essential in the survival and industrialization of 
humankind (Coates 1985; Murray 1995). This interest and utility 
has led to the characterization and systemization of mineralogy 
and mineral occurrence on Earth and other planetary bodies 

(Dana 1895; Bragg and Bragg 1913; Strunz and Tennyson 1941; 
Lehnert et al. 2000; Lafuente et al. 2015; Hazen and Morrison 
2020). As a result of this rich history of scientific investigation, 
vast amounts of information are available on the occurrence 
and attributes of minerals. These data provide a robust platform 
for the analysis of more complex, multidimensional, and larger 
mineralogical systems; the integration of heterogeneous data 
types, linking to data from other fields of science; and predic-
tive, data-driven scientific exploration—all of which leads to 
the answering of complex, multidisciplinary questions. The 
potential of data-driven mineralogical research has been exempli-
fied by important scientific advances in the last decade. Recent 
discoveries have demonstrated periodicity of mineral formation 
and diversification associated with supercontinent assemble 
(Bradley 2011; Voice et al. 2011; Hazen et al. 2014; Nance et al. 
2014), an association of mineral redox state to the oxidation of 
Earth’s atmosphere (Liu et al. 2021; Hummer et al. 2022; Large 
et al. 2022), and that much of Earth’s mineral inventory is the 
direct or indirect result of interactions with water and/or biology 
(Hazen and Morrison 2020, 2022), as well as the prediction of 
the number of as-yet undiscovered mineral species (Hazen et al. 
2015; Hystad et al. 2015, 2019), the chemical composition of 
minerals on Mars (Morrison et al. 2018a, 2018b, 2018c), and the 
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location of undiscovered mineral deposits (Prabhu et al. 2019). 
Mineralogy is rapidly entering the data-driven era, tackling previ-
ously unanswerable questions while demonstrating the need and 
opportunity for a symbiotic relationship between mineralogy and 
the fields of data science and informatics.

Data-driven efforts in mineralogy have been gradually in-
creasing in the past decades, and there are some promising stud-
ies that have helped researchers uncover patterns hidden in the 
data—patterns that have led to scientific discoveries (Morrison 
et al. 2017, 2020; Gregory et al. 2019; Hazen et al. 2019; Prabhu 
et al. 2019; Hazen and Morrison 2020, 2022; Zhao et al. 2020; 
Boujibar et al. 2021; Hystad et al. 2021). While still nascent, the 
application of data science and data analytics methods in min-
eralogy shows a promising trajectory, though the development 
of these methods and advances in the past have been somewhat 
ad hoc in nature. However, development of mineral informat-
ics can be guided in a more deliberate and systematic way by 
considering the underpinnings from information theory and 
data science advances, as exemplified by collaborations in other 
fields, including biology, medicine, chemistry, and astronomy. 
We believe this is the start of a new era in mineralogy, where 
utilizing data-driven methods to answer mineralogical (and 
broader scientific) questions takes center stage.

In this paper, we take a high-level look at our vision for 
“Mineral Informatics,” the underpinnings that led to its concep-
tion, as well as the needs, challenges, and opportunities for this 
emerging field. We also discuss the implications such advances 
will have on the field of mineralogy.

Informatics is the study of the structure, algorithms, behav-
ior, and interactions of natural and artificial systems that store, 
process, access, and communicate information (Fox 2011). 
The term informatics has often been used in conjunction with 
the name of a domain/discipline, for example, Bioinformatics, 
Geoinformatics, Astroinformatics, and Cheminformatics. In the 
past, researchers with expertise in a specific domain worked on 
processing and engineering information systems designed for 
that domain only. But in the last decade, informatics has gained 
much wider visibility across a range of disciplines (Prabhu 2019). 
This wider visibility is in large part due to successful efforts at 
systematizing the core (i.e., discipline neutral) aspects of infor-
matics, for example, use cases, human-centered design, itera-
tive approaches, and information models (Fox 2020). The core 
methods of informatics are used as a foundation to explore raw 
data and extract information from the data that lead to scientific 
discoveries. As the volume and complexity of the data increase, 
so does the need for utilizing the solid foundations provided by 
informatics methods and combining them with the needs of the 
specific domain to pursue data-driven scientific discoveries.

Mineral informatics is a nascent approach compared to fields 
like Bioinformatics, Medical Informatics, and Geoinformatics 
that have been pursued for decades (Collen 1986; Fox et al. 2006; 
Sinha et al. 2010; Gauthier et al. 2019). The intention of this paper 
is not to create a new specific field or a sub-field as a separate silo 
but to think of and document the needs of researchers studying 
minerals in various contexts and how data science and informat-
ics methods are a key next step in mineralogical studies. We also 
need to learn from the successes and failures of more mature 
domains that have applied the informatics approach. Lastly, a 

very important factor to keep in mind is the truly interdisciplin-
ary and important questions that can be explored by studying 
minerals. So, while the term “mineral informatics” may seem 
to be creating a new subclass of geoinformatics, we assert that 
we are instead tying together various disciplines that use miner-
als as a key part of the pursuit to answer big science questions.

A methodology for mineral informatics 
explorations

In this paper, we present a general methodology for mineral informatics (see 
Fig. 1). This methodology, adapted from Fox and McGuinness’ Semantic Web 
Methodology (Beaulieu et al. 2017), includes all the steps typically followed 
in a data-driven scientific exploration. This approach was created for mineral 
informatics but, as is the case with many data science and informatics approaches, 
is transferable and applicable to other domains.

Most informatics explorations start in one of two ways: (1) scientists have 
a research question they want to answer, or (2) scientists have data ready to be 
explored. In the second case, we perform preliminary data exploration, which 
helps generate new hypotheses and research questions based on interesting trends 
and anomalies in the data.

Once a specific research question has been selected for scientific exploration, 
we start by dividing the large problem into smaller, more tractable parts. Next, 
we iteratively develop use cases for every one of these parts. A “use case” is a 
documented collection of possible sequences of actions and interactions between 
a system and its users in pursuit of a particular goal. Identification and develop-
ment of use cases help to define the needs (e.g., data, personnel, infrastructure) 
for this data-driven approach. The next steps in the methodology include creating 
an (or assigning roles to an already established) interdisciplinary team to conduct 
the data-driven research.

Next, we inventory the preliminary data set and/or existing mineral data 
resources to determine if they are what is necessary for the desired exploration. In 
some cases, we need to collect, compile, and extract data from other repositories 
or sources, including scientific literature, websites, digital PDFs, and experimental 
results. We then create an information model to better understand and mediate 
data from heterogeneous sources and data types, which provides a holistic picture 
of the relationships among the various data sources, types, and attributes. The 
information model allows us to extract the data sets and data attributes most 
relevant to answering the desired research question. Note that this step differs 
from the statistical and machine learning approaches used for feature selection.

We then begin applying data analytics methods (i.e., data visualization as 
well as descriptive, predictive, and prescriptive analysis) to identify and explore 
patterns and anomalies seen in the data. A team of domain and data scientists 
iteratively examine the results of the analytics methods and use their respective 
expertise to: (1) provide interpretations and/or insight, and/or (2) recommend 
changes to the analysis. The data analysis and scientific interpretation are usu-
ally done over multiple iterations with small modifications to the approach, 
algorithms, and/or code to explore different aspects of the data.

If scientists come to an agreement that parts of the analysis would be widely 
used in the larger community, then they can choose to generalize and adapt 
their work into a system, technology, or infrastructure. This development can 
include the creation of tools, code snippets, reusable workflows, R packages, 
Python libraries, and other resources. Irrespective of whether there is a decision 
to create a general tool, technology, or package, we recommended using rapid 
prototyping coding practices (Gordon and Bieman 1995) for data science and 
informatics activities.

After obtaining the desired results from our data analysis, it is important to 
disseminate and effectively communicate the research products generated by 
mineral informatics explorations. Research products can include data sets, code, 
scientific literature, and executable workflows. Establishing best practices for 
disseminating research products is an ongoing effort, especially in the geoscience 
community. Data sets can be published as part of a data paper, or they can be 
assigned their own DOIs by data repositories such as Zenodo, Dryad, Figshare, 
or Dataverse (Assante et al. 2016). Existing mineral data repositories, including 
the EarthChem Library (ECL), Astromat, and the Open Data Repository (ODR) 
also provide DOIs for data sets deposited by researchers. Additionally, some 
journals host data associated with their publications. Similar to releasing data 
used in scientific exploration, code can be maintained and released in many 
ways, including Github (with a persistent identifier pointing to the repository), 
Figshare, or Zenodo. Saving executable code for an experiment in an interactive 
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environment like Jupyter or R notebooks adds to the reproducibility of the code 
and of the scientific workflow in general (Prabhu and Fox 2021). Dissemination 
of scientific advances through scientific publications has been practiced for more 
than 300 years (Fyfe et al. 2015). In addition to journal publications, conference 
proceedings, preprint servers (such as arXiv, ESSOAr, and EarthArXiv), and 
even press releases associated with publications have considerably improved 
the landscape of disseminating research products.

The final stage of our informatics methodology follows the sharing of the 
research products. If researchers follow FAIR (Findable, Accessible, Interoper-
able, and Reusable) and Open Science practices (Wilkinson et al. 2016; Stall 
et al. 2019; Ramachandran et al. 2021) not only for the dissemination of their 
scientific results but also during the use case development, information model-
ing, and analysis stages, then it becomes easier to evolve, improve, redesign, or 
adapt their work. Ongoing research and recommendations on designing FAIR 
and Open scientific workflows will help improve the methodology of data-driven 
exploration (Sandve et al. 2013; Kluyver et al. 2016; Prabhu and Fox 2021).

It is important to evaluate the outcomes at almost every stage of the informatics 
methodology. The evaluation method or metric used at each stage will be signifi-
cantly different, but it is important to stop at the end of every stage and assess not 
only the progress made but also lessons learned for future iterations in the same 
exploration or the beginning of a different exploration. For example, a data collec-
tion/resource may be evaluated based on a set of quality criteria (e.g., Prabhu et al. 
2021b), but results from the data analysis may need to use quantitative metrics to 
evaluate results from a descriptive, prescriptive, or predictive model (e.g., Statnikov 
et al. 2008; Hossin and Sulaiman 2015; Tomašev and Radovanović 2016; Zhou et 
al. 2021). Established evaluation methods exist for each stage of the informatics 
methodology, and we recommend following those established best practices and 
standards set by the scientific community. Issues found during the evaluation will 
need to be documented in the use case and thus improve the data-driven exploration 
during the next iteration or redesign of the approach.

Challenges and opportunities in mineral 
informatics

Mineral informatics methods not only systematize the mineral 
data landscape, but also provide a path to answering longstanding 
interdisciplinary scientific questions. Figure 2 gives an example 
of the domains influenced by the research questions being 
broached with mineral informatics methods. In the following 
section we outline some significant scientific questions that can 
be addressed with mineral informatics.

Can complex chemical and physical attributes of mineral 
specimens reveal their paragenetic modes and function as 
proxies for biosignatures?

Minerals record the physical, chemical, and, in some cases, 
biological conditions of their paragenetic modes (i.e., forma-
tional and alteration environments). This information is stored 
in the myriad attributes of mineral specimens, including major, 
minor, and trace elements; stable isotopes and their ratios; solid 
and fluid inclusions; texture, twinning, exsolution, and other 
structural characteristics; grain size and shape; and much more. 
Therefore, conditions of mineralization, including whether or 
not there was biological input, can be characterized with cluster 
analysis performed on the various properties of mineral samples 
(Gregory et al. 2019). Furthermore, robust classification schemes 

Figure 1. The mineral informatics methodology adapted from Semantic Web methodology by Fox and McGuinness’ Semantic Web Methodology 
(Beaulieu et al. 2017).
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can be developed from the clustering models that will enable 
prediction not only of the geologic environment of formation but 
also of any biogenic origins (Hazen 2019). Therefore, this work 
will deconvolve our understanding of the minerals that formed 
in environments influenced by life from those that formed under 
strictly abiotic conditions.

Is a planet’s diversity and statistical distribution of mineral 
species influenced by the presence of life?

Life creates unique niches of chemical disequilibrium for 
minerals to exploit. These processes likely drove a significant 
fraction of the mineral diversity we see on Earth today, influ-
encing the spatial and temporal patterns of mineral distribution 
(Hazen 2018; Morrison et al. 2020; Hazen and Morrison 2022). 
These trends on Earth and other planetary bodies can be mod-
eled, compared, and used to develop statistical biosignatures and 
abiosignatures that are reflected in the diversity and distribution 
of mineral species across a planetary body (Hystad et al. 2019) 
and provide models for planetary-scale mineralogical biosigna-
tures of inhabited worlds.

Can we predict mineral occurrences on other planets given 
limited planetary data?

From orbital infrared spectroscopy, we have obtained global 
or near-global data sets of the mineralogy of other terrestrial 
worlds, including Mars, Mercury, Vesta, and Ceres (Murchie et 
al. 2009; De Sanctis et al. 2012; Ehlmann and Edwards 2014; 
Namur and Charlier 2017; Prettyman et al. 2019). Informatics 
methods, such as association analysis, can be used to predict 
the existence of minerals that cannot be detected from space. 
By understanding mineral affinities for assemblages, localities, 
and geochemical parameters, we may be able to use a sparse 
mineralogical data set to anticipate future discoveries (Prabhu 

et al. 2019), but first a robust small/sparse-data framework must 
be developed. Enhancing predictive capabilities will help to 
prioritize landing sites for future landers and rovers with broad 
science goals that relate to mineralogy, like understanding 
planetary history or searching for signs of life. Such predictions 
would be strategically important because interplanetary missions 
cost hundreds of millions to billions of dollars and take years to 
decades to develop, build, and launch.

We also have geochemical indicators of the mineralogy of 
the ice-covered ocean world Enceladus from plume flybys and 
E-ring analyses performed by the Cassini spacecraft (Postberg 
et al. 2008; Waite et al. 2017; Glein and Waite 2020). Mineral 
informatics methods can help predict the mineral composition of 
ice-covered ocean worlds, whose mineralogy is planetologically 
and perhaps astrobiologically relevant but cannot be accessed 
directly in the near future.

Co-occurrence of minerals and life: do minerals enable or 
shape the metabolic landscape?

Minerals play a key role in biological redox transformations. 
Many microorganisms (e.g., of the genus Geobacter) are able to use 
metals in their environment to power their metabolisms (Childers 
et al. 2002). Several studies have suggested deep similarities be-
tween minerals and metalloenzymes (Nitschke et al. 2013; Zhao 
et al. 2020; McGuinness et al. 2022). Thus, minerals may play an 
important role in shaping the metabolic landscape of ecosystems by 
providing electron donors/acceptors or raw materials (Novikov and 
Copley 2013) that organisms assimilate to create metalloenzymes. 
If minerals and their structures are found to be critical in shaping 
which metabolisms occur/do not occur in certain environments, 
these mineralogical data may allow for the prediction of metabo-
lisms in terrestrial and extraterrestrial environments for which we 
have mineralogical data.

Figure 2. Interdisciplinary research questions related where mineral informatics play a key role.
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What role did minerals play in the origin of life?
Several studies have posited that minerals played critical roles 

in the emergence of life on Earth, whether by catalyzing critical 
biomolecular reactions, templating the formation of biopolymers, 
influencing the homochirality of organic molecules, or perform-
ing redox transformations and carbon fixation (Hazen and Sholl 
2003; Hazen 2005; Hazen and Sverjensky 2010; Nitschke et 
al. 2013; Russell 2018). Others have even suggested that clays 
and other minerals with layered structures may have been the 
first self-replicating entities (Cairns-Smith and Hartman 1986; 
Cairns-Smith 1990; Greenwell and Coveney 2006; Brack 2013), 
though these hypotheses have not been confirmed experimentally 
(Bullard et al. 2007; Krivovichev et al. 2011). Mineral infor-
matics, combined with phylogenetics, geology, and laboratory 
experiments, could be informative for deducing the likely role(s) 
that minerals played at the origin of life in Earth’s deep past. If 
certain minerals are found to be uniquely critical to the emer-
gence of life on Earth, then this discovery would have profound 
implications for the emergence of life on other planetary bodies 
where those minerals may or may not occur. The origin of life 
from a non-living substance involves considerable jump in the 
informational (static) complexity of the underlying molecular 
structures, which should be considered in any possible scenario 
of molecular evolution/revolution that led to the appearance 
of self-replicating living entities. The sudden rise in structural 
complexity corresponds to the drop in configurational entropy 
(Krivovichev 2016). Can the (local) entropic changes associated 
with the origin of life be measured quantitatively and understood 
using mineral informatics data?

Can mineral networks serve as a planetary-scale 
biosignature?

Roughly half of all known minerals are mediated by biol-
ogy and 34% are exclusively biotic (Hazen et al. 2021, 2022; 
Morrison et al. 2021; Hazen and Morrison 2022). Many of these 
minerals are formed when life opens up a new compositional 
space for the planet, such as the Great Oxidation Event (Hazen 
et al. 2008; Sverjensky and Lee 2010). However, some of this 
biogenic chemical space may be abiotically accessed on other 
worlds. Abundant atmospheric O2, for instance, may be abioti-
cally generated by various star–planet interactions (Meadows 
et al. 2018) and references therein. Earth and planetary mineral 
network analysis may reveal whether mineral networks of envi-
ronmental, biological, geochemical, and mineralogical attributes 
can distinguish living from nonliving worlds.

Can mineral networks serve as a proxy for the extent of 
planetary evolution?

Mineralogical evolution occurs when processes create new 
pressure–temperature–compositional regimes where solids 
can form (Hazen et al. 2008, 2021; Hazen and Morrison 2020; 
Cleland et al. 2021). Each stage of mineral evolution expands 
the network of mineralogy through the introduction of new 
minerals, localities, and paragenetic modes. The network of 
martian mineralogy, therefore, is thought to be a subset of the 
network of Earth’s mineralogy, due to the halting or slowing 
of mineral-generating geological processes on Mars. One can 
consider Mars and Earth to be two points along a spectrum of 

terrestrial worlds whose geological (and biological) activities 
have differed in temporal extent. A hypothetical world where 
plate tectonics was sustained for ~1 Gyr but then ceased should 
have a mineral network that surpasses Mars’s mineral diversity, 
but is still a subset of Earth’s. In this way, mineral informatics 
helps us interpret the extent of a planet’s mineralogical network 
as a record of ancient and extinct processes, revealing a planet’s 
geological history.

When considering exoplanetary systems where element ratios 
(e.g., C:O or Mg:Si) differ greatly from those of our own solar 
system, this linear spectrum on which Mars and Earth lie becomes 
a multidimensional phase space (Unterborn et al. 2016; Hinkel 
and Unterborn 2018; Unterborn and Panero 2019; Putirka et al. 
2021). Understanding mineral networks from an informatics 
point of view may help to predict how planetary mineralogy 
might evolve in vastly different geochemical contexts.

Did the emergence and evolution of life play a role in 
the increase of average mineral structural complexity on 
Earth through deep time?

It has been shown that complexity of Earth’s mineral kingdom 
increased gradually during planetary evolution (Krivovichev et 
al. 2018), but it is unclear whether this trend is related to the con-
temporaneous increase in complexity in the course of biological 
evolution. The average structural complexity of minerals on the 
abiotic Moon, for example, does not follow the same trend of 
increasing complexity through time. Minerals are relatively less 
complex than biological organisms, both in terms of their static 
(Krivovichev 2013, 2015) and functional (Hazen et al. 2007) 
complexities. However, since life and the mineral kingdom co-
evolved, the character of the evolution of mineral complexity 
on Earth (Krivovichev et al. 2018) may have been influenced 
by biological activity, and is thereby a potential bio-signature.

Successful use cases in mineral informatics
Strategies for future advances in mineral informatics are in-

formed by previous efforts—“use cases” that have applied data 
science analytics and visualization to tackle key mineralogical 
problems. In the following section we review five of these recent 
and ongoing studies.

The evolution of mineralizing environments, as 
characterized by their myriad, complex attributes

Mineralization, and associated formational environments, 
vary significantly across Earth and neighboring planetary bodies, 
as well as throughout the different historical stages of planetary 
evolution. These stages and environmental parameters dictate 
the types of mineralization that occur and, likewise, leave their 
mark in the complex chemical and physical attributes of the 
resulting mineral specimens. Understanding the changing char-
acteristics of mineralizing environments spatially and temporally 
across our planetary systems requires the examination of huge 
volumes of mineralogical information. The beginning steps of 
this work included a survey of all formational environments of 
~5700 known mineral species, resulting in a compiled data set 
ripe for exploration (Hazen and Morrison 2022; Hazen et al. 
2022). Initial exploration has led to the discovery that: (1) more 
than 80% of all mineral species formed through processes that 
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involved water; (2) 50% of minerals formed through processes 
directly or indirectly related to biology, with 34% of miner-
als forming exclusively through biotic processes; (3) 42% of 
minerals contain one or more rare elements (e.g., REE, PGE, 
As, Mo, Sn), elements which all together represent only 0.01% 
of crustal atoms; and (4) most minerals have only one (59%) or 
two (24%) modes of formation, with a few notable exceptions, 
including pyrite with the most modes of formation at 21 (Hazen 
and Morrison 2022).

An additional component of this work involves analyzing those 
myriad attributes of mineral specimens via cluster analysis to relate 
their complex characteristics to their modes of formation, thereby 
determining the natural kind clustering of these mineral systems. 
There are many such projects underway, including those examining 
the formation of pyrite (Gregory et al. 2019; Zhang et al. 2019), 
garnet minerals (Chiama et al. 2020, 2022), spinel oxide phases 
(Hindrichs et al. 2022), and presolar moissanite (SiC) (Boujibar 
et al. 2021; Hystad et al. 2021). Boujibar et al. (2021) performed 
cluster analysis on a range of isotopic data from presolar SiC grains 
to examine and compare the origins of these materials. This study 
made several exciting discoveries—while the clustering model 
agreed with previously defined grain types and origins in several 
aspects, there were notable and important deviations, including (1) 
a division of one previously defined grain type into three distinct 
kinds based on the varying metallicity of the parent star; (2) the 
arbitrary nature of certain prior divisions in systems that in fact are 
continuous rather than discrete; (3) the observation that asymptotic 
giant branch (AGB) stars with narrow ranges of mass and metallic-
ity tend to have enhanced production of SiC; and (4) enrichments 
in 15N and 26Al that are not explained by existing AGB models.

Next steps. This exploration of mineralizing environments and 
their characteristics not only provides an opportunity to integrate 
data from heterogeneous sources and types (e.g., X-ray diffraction, 
electron microprobe analysis, inductively coupled plasma mass 
spectrometry), but also to link data from different fields of science 
to better understand mineral paragenesis. Handling heterogeneous 
data are a challenge (Reichman et al. 2011; Wang 2017) and many 
researchers have been actively working on using heterogeneous 
data for their analysis by creating methods, approaches, and 
pipelines to seamlessly clean, integrate, process, and analyze data 
(Wiederhold 1999; Beneventano and Bergamaschi 2004; Wang 
2017; Zhang et al. 2018; Nazábal et al. 2020). Additionally, the ex-
ploration conducted by Boujibar et al. (2021) provided another use 
case to test machine learning methods on sparse data sets, thereby 
aiding in the eventual development of a sparse data framework.

Mineral association analysis
Prediction of the locations of as yet undiscovered mineral 

deposits has long been a point of great scientific and economic 
interest. Mineralization and mineral co-occurrence across the varied 
geologic terrains of Earth and other planetary bodies has a level of 
complexity that makes prediction of mineral locations, or even the 
mineral inventory at a locality of interest, difficult. However, recent 
advances in the mineral locality data resources (e.g., mindat.org and 
the Mineral Evolution Database) have provided an opportunity to 
begin tackling this tough problem with machine learning. Associa-
tion analysis can be used to create a recommender system (Burke et 
al. 2011; Shah et al. 2017) that generates association rules based on 

known co-occurrences, and these rules can be queried to determine 
the likelihood of currently unknown co-occurrences. In the case of 
minerals, we can query our mineral association rules to predict: (1) 
previously unknown locations of a mineral species; (2) previously 
unknown locations of mineral assemblages, including those that 
represent analog environments for study; and (3) the mineral inven-
tory at a locality of scientific interest. The mindat.org team have 
conducted preliminary explorations using pairwise associations to 
predict the occurrence of certain minerals on Earth.

Next Steps. Mineral association analysis provides a powerful 
approach to new types of data problems. We need to modify the 
association analysis algorithms to better handle larger mineral oc-
currence data sets. For example, our models can currently handle 
only 2473 minerals occurring in 87 306 localities (Prabhu et al. 
2019), but there are at present more than 5800 mineral species in the 
International Mineralogical Association’s (IMA) list of approved 
mineral species (https://rruff.info/ima/, accessed 17 January 2023), 
which occur in more than 375 000 localities (https://www.mindat.
org/stats.php, accessed 20 December 2022). To increase the scal-
ability of the association analysis algorithm, we plan to introduce 
threshold checks and additional parameters during the association 
rule generation process, so that the number of rules generated is 
controlled. In addition to improving the scalability of association 
analysis methods, we also need to work on the dimensionality and 
reducing the minimum support of our method. For example, our 
method currently develops rules containing 4 minerals at a time, 
but there are localities with more than 50 coexisting minerals. 
Therefore, an important next step in our research is to increase the 
dimensionality of the association analysis method to handle more 
complex mineral assemblages. We plan to reduce the number of 
rules in a rule base by better identifying redundant rules or similar 
rules, thus leaving more disk space for higher dimensional rules. We 
also need to adapt our methods to enable inclusion of rarer mineral 
species that are known to occur in 17 or fewer localities (Prabhu 
et al. 2019). We plan to include rarer mineral species by weight-
ing the mineral occurrence by other factors including tonnage, its 
paragenetic mode diversity, and criticality of the mineral. Lastly, 
we are currently developing a new approach to evaluate association 
rule mining methods (Prabhu et al. 2021a).

Martian crystal chemistry
The scientific payload onboard the NASA Mars Science Labo-

ratory (MSL) rover, Curiosity, is the one of the most advanced 
instrument suites ever landed on another planet. Part of this payload 
is the CheMin X-ray diffraction (XRD) instrument, which is used 
to characterize the mineralogy of rock and soil samples. CheMin 
is capable of identifying mineral phases present in samples, as 
well as their abundances and, for phases with an abundance ≥1 
to 3 wt%, their unit-cell parameters. While there are instruments 
that analyze the bulk composition of martian samples, there is no 
instrument that directly measures the chemical composition of 
these mineral phases. However, in compiling data resources on 
mineral unit-cell parameters and compositions measured on Earth, 
the CheMin XRD patterns and resulting mineralogical data are 
used to predict the composition of the mineral phases observed on 
the martian surface (Morrison et al. 2018a, 2018c).

These initial studies, as with many investigations predating 
it, used unit-cell parameters to predict mineral composition in 

http://mindat.org
http://mindat.org
https://rruff.info/ima/
https://www.mindat.org/stats.php
https://www.mindat.org/stats.php
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chemically limited systems, generally 2- or 3-element systems 
such as Fe-Mg olivine or Mg-Fe-Ca pyroxene (Morrison et al. 
2018a, 2018c). This limitation was due to the complexity of the 
compositional and structural parameter space when four or more 
elements are considered together. One way to develop a model 
that accounts for the complexity associated with multi-component 
systems and predicts the chemical composition of crystalline 
phases based on their crystallographic parameters is by using Label 
Distribution Learning (LDL) (Geng et al. 2013, 2014; Geng 2016). 
LDL is a machine learning algorithm originally created for facial 
recognition applications. When the approach was adapted for ap-
plication to crystallographic and chemical parameters, it resulted 
in a model that accurately predicted the multi-component chemi-
cal compositions (up to 12 elements, in some mineral systems) of 
samples based solely on their unit-cell parameters (Morrison et al. 
2018b). This crystal-chemical method has expanded the capability 
of XRD on spacecraft to that of a powerful chemical analysis tool, 
such as an electron microprobe, and has dramatically deepened our 
understanding of the geologic history of Mars.

Next steps. This exploration was the initial inspiration that 
motivated us to create a framework for small and sparse data. 
In addition to our work developing a framework for small and 
sparse data, we will also need to develop methods to evaluate the 
accuracy of predictions made by our data models. This evaluation 
will attempt to address sources of uncertainty and how that affects 
our predictions. The LDL evaluation method being developed will 
address uncertainty of measurement (instrument errors), uncertainty 
from sampling (various sampling strategies to train predictive 
models), and most interestingly, scope compliance (Kläs 2018) 
of the LDL method.

Machine learning majorite barometer
Diamond-hosted majoritic garnet inclusions provide important 

insights in processes that occur in Earth’s deep mantle. Majoritic 
garnets provide the most accurate estimates for diamond formation 
pressures because laboratory experiments have shown that garnet 
chemistry varies as a function of pressure (Akaogi and Akimoto 
1977; Irifune 1987; Collerson et al. 2010; Wijbrans et al. 2016; 
Beyer and Frost 2017; Thomson et al. 2021). Thomson et al. 
(2021) show that none of the available barometers in the literature 
reliably reproduces the pressures of experimentally synthesized 
majoritic garnet over the entire pressure-temperature-composition 
space investigated. Hence, they developed a barometer by using 
machine learning algorithms (specifically random forest regres-
sion) and experimental training data. This machine learning ap-
proach, tested with various cross-validation methods, produces 
a barometer with a much-improved fit to the experimental data, 
especially at the highest pressures and at extremes of composition 
space, and thus provides more reliable estimates of formation 
pressures of diamond-hosted majoritic inclusions. Applying the 
machine learning barometer to the global database of diamond-
hosted inclusions reveals that their formation occurs over specific 
depth intervals that can be related to melting and decarbonation 
of subducted oceanic crust.

Next steps. While the machine learning approach improved 
the fit to the available experimental data, it also revealed regions 
in pressure, temperature, and most critically, composition space 
where the experimental data set is sparse. Because many of the 

mineral inclusions have compositions lying near or within sparse 
data regions, uncertainty remains as to whether the barometer is 
accurately capturing their pressure (and depth) of origin. Experi-
ments can now be targeted to these specific P-T-X regimes for 
an even more improved barometer. Machine learning methods 
also can be used to predict the compositional variables that 
correlate most strongly with changes in pressure, leading to an 
improved crystal chemical and thermodynamic understanding of 
pressure-sensitive substitutions in garnet. These methods can also 
be applied to other mineral thermometers and barometers where 
large experimental data sets are fitted to extract thermodynamic 
solution parameters.

Comparison of mineral and protein metal clusters
Understanding the evolutionary stages of biology on a geo-

logical timescale is hampered by the propensity of organic matter 
to degrade within thousands of years without leaving physical 
fossil records. To understand how life evolved over the course 
of billions of years, proxy data are required.

At least five observations suggest that minerals can act as a 
source of proxy data from which to infer how biology evolved: 
(1) biology and geology are intimately connected, for instance, 
cellular organisms excrete minerals as metabolic end products 
[hazenite (Yang et al. 2011); greigite (Gorlas et al. 2018)]; and 
cellular organisms transmit electrons to and from minerals (Shi 
et al. 2016); (2) cellular organisms and minerals use transition 
metals (Fe, Mn, Co, Mo, Cu, V, W, Ni) to perform electron trans-
fer reactions; (3) mineral surfaces are hypothesized and shown 
to be capable of prebiotic reactions similar to those that extant 
proteins perform (Wächtershäuser 1988; Novikov and Copley 
2013); (4) minerals are similar to the rings of a tree in that they 
provide information (e.g., temperature, humidity, etc.) about the 
environment of formation; and (5) metal cluster structures of 
extant proteins were observed to be so similar to the structure of 
bulk mineral metal clusters as to be considered vestiges of miner-
als that were co-opted and assimilated into biological systems 
(Russell and Hall 1997; Nitschke et al. 2013; Zhao et al. 2020).

Access to large mineral and protein structure databases 
allows the potential to understand how mineral and protein 
metal clusters are connected. Connecting the mineral world 
with biology will allow a deeper understanding of how geol-
ogy and biology co-evolved. Directly quantifying metal cluster 
similarity between minerals and proteins is a challenge due 
to comparing the finite protein cluster to a periodic lattice of 
a mineral. Solutions using graph-based methods have been 
proposed (Zhao et al. 2020; McGuinness et al. 2022). Each 
solution compared subgraphs of mineral and protein metal 
clusters, however without including metal coordination, and 
mineral dimensionality (2D layer vs. 3D lattice) metal clusters 
were quantified as being highly similar (Zhao et al. 2020). 
Subsequent studies, building off the pioneering quantitative 
work of Zhao et al. (2020), included these chemically impor-
tant characteristics and found FeS minerals and protein were 
significantly less similar (McGuinness et al. 2022) than previ-
ously proposed (Russell and Hall 1997; Nitschke et al. 2013) 
Even though McGuinness et al. (2022) show that FeS mineral 
lattices and protein metal clusters are not structurally similar, 
this method has not been applied to other metal types such as 
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Ni or Cu. Applying the method developed by McGuinness et 
al. (2022) to additional metal types may help understand the 
extent to which proteins and minerals co-evolved as cellular 
metabolism and minerals became more complex (Moore et al. 
2017; Krivovichev et al. 2018).

Next steps. An additional step toward a potentially clearer 
understanding of how minerals and proteins are related is to 
compare mineral surface and protein metal cluster structures. 
Mineral surfaces expose the chemically active components 
that may have catalyzed biologically relevant products under 
hydrothermal conditions on early Earth (Novikov and Copley 
2013). Comparing the surface properties of minerals to the 
chemical properties of protein metal clusters might elucidate 
the extent to which minerals acted as primitive enzymes at the 
dawn of life. Did biology co-opt the chemical configuration 

of the chemically active surface of minerals to reproduce the 
reactions that were possible abiotically? Or did biology incor-
porate and reconfigure metal building blocks (e.g., Fe2S2) to 
meet growing cellular needs? Answering these questions is 
challenging because mineral surfaces are complex, i.e., they 
are subject to structural relaxation, chemically active, display 
complexly irregular surface topologies, and are affected by 
many solution conditions (pH, salinity, temperature, etc.) Al-
ternatively, there also exists the possibility that protein metal 
clusters do not bear any significant resemblance to minerals 
(neither surface nor lattice structure), suggesting an alternative 
pathway and relationship between mineralogy and biology in 
which biology acts independently, only relying on minerals 
for the feedstock (i.e., metals) to nucleate the information-rich 
systems that remain far from equilibrium.

Table 1. A non-exhaustive list of open mineral data resources
Name URL Description
IMA list of approved minerals https://rruff.info/ima/ A searchable database of mineral species information, 
  including chemical formula, unit-cell parameters, paragenetic modes,
  and links to other important mineralogical data resources.

RRUFF Project https://rruff.info/ A mineral library and database of chemical, spectral, and diffraction data
   for mineral species (Lafuente et al. 2015).

Mineral Evolution Database https://rruff.info/Evolution/ A database of mineral locality and age information, with ~200 000 
  species/locality/age records extracted primarily from scientific 
  literature and mindat.org (Golden et al. 2016, 2019).

American Mineralogist Crystal http://rruff.geo.arizona.edu/AMS/amcsd.php A crystal structure database that includes every structure 
Structure Database  published in American Mineralogist, Canadian Mineralogist,
  European Journal of Mineralogy, and Physics and Chemistry 
  of Minerals, as well as selected data sets from other journals.

Handbook of Mineralogy  A five volume set with each of the 4988 pages dedicated to a mineral
  species description, with information such as crystallographic and 
  physical attributes, microprobe chemical analyses, paragenetic 
  mode and locality information, and select references.

Mindat.org https://www.mindat.org/ The world’s largest open database of minerals, rocks, meteorites 
  and the localities from which they were found.

Mineral Properties Database https://odr.io/MPD A database of various mineral attributes including age, color, 
  redox state, structural complexity, and method of discovery.

Evolutionary System of https://odr.io/esmd A database containing measured geochemical and physical 
Mineralogy Database  characteristics of mineral samples, including major, minor, trace 
  elements as well as isotopic ratios (Chiama et al. 2022).

CheMin Database https://odr.io/chemin A database containing the X-ray diffraction data from martian 
  rock and soil samples analyzed by the CheMin instrument 
  onboard the NASA Mars Science Laboratory.

Astromaterials Data System https://www.astromat.org/ A data infrastructure that stores, curates, and provides 
  access to laboratory data acquired on samples curated in the 
  NASA Johnson Space Center Astromaterials Collection, including 
  the Apollo lunar samples and the Antarctic meteorite collection 
  (Lehnert et al. 2020).

EarthChem https://earthchem.org/ A data system providing open data services to the geochemical, 
  petrological, mineralogical, and related communities, including 
  data preservation, discovery, access, and visualization.

GEOROC http://georoc.mpch-mainz.gwdg.de/georoc/ A global geochemical database containing published chemical 
  and isotopic data as well as extensive metadata for rocks, minerals, 
  and melt/fluid inclusions.

MetPetDB https://tw.rpi.edu/project/MetPetDB A relational database and repository for global geochemical data on
  and images collected from metamorphic rocks from the Earth’s crust.

Planetary Data System https://pds.nasa.gov/ A long-term archive of digital data products returned from NASA’s 
  planetary missions, and from other kinds of flight and ground-based 
  data acquisitions, including laboratory experiments.

Mineral RI https://odr.io/mineralRI A database containing the refractive indices minerals and synthetic
   compounds. (Shannon et al. 2017).

https://rruff.info/ima/
https://rruff.info/
https://rruff.info/Evolution/
http://rruff.geo.arizona.edu/AMS/amcsd.php
https://www.mindat.org/
https://odr.io/MPD
https://odr.io/esmd
https://odr.io/chemin
https://www.astromat.org/
https://earthchem.org/
http://georoc.mpch-mainz.gwdg.de/georoc/
https://tw.rpi.edu/project/MetPetDB
https://pds.nasa.gov/
https://odr.io/mineralRI
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Mineral information systems
Table 1 is a non-exhaustive list of open access mineral data 

resources that are among the most widely used in the commu-
nity. Note that many other useful and important mineral data 
resources are not yet available as open resources.

The global research community of mineralogy has made 
impressive progress on information models for database 
construction and data sharing in the past decades. From the 
point of view of data management, a good information model 
should be correct, complete, and consistent. An effective way 
for information modeling in real-world practice is to follow 
or adapt existing community agreements or standards on 
mineralogy, such as those on the physical, chemical, and bio-
logical characteristics of minerals. For instance, the Database 
of Mineral Properties (https://rruff.info/ima/) maintained by 
the International Mineralogical Association (IMA) keeps an 
up-to-date list of mineral species. The main components in the 
information model include mineral name, chemistry, mineral 
groups, origins, paragenetic mode, IMA status, relevant refer-
ences, and links to external sources such as mindat.org, Google 
Images, and Wikipedia.

As open data and data-driven studies are increasingly 
accepted in the geoscience community, many databases in the 
field of mineralogy also help in increasing the visibility of their 
information model and building machine interfaces for data 
query, access, and download. For instance, the RRUFF database 
(https://rruff.info, accessed 21 January 2023) has integrated 
records of Raman spectra, X-ray diffraction, and chemistry 
data for minerals. The user interface enables data query through 
mineral name and chemistry includes/excludes. Interested users 
can also contact the database manager for batch data download 
and sharing. Mindat.org (https://www.mindat.org, accessed 21 
January 2023) is another widely used database in the field of 
mineralogy. Its construction and maintenance follow a crowd-
sourcing style. Besides the physical and chemical attributes of 
mineral species, a unique attribute on mindat.org is a compre-
hensive list of the localities where that mineral species has been 
found. In the past years, many research activities have benefited 
from the open data shared by mindat.org. As each of those open 
databases has its own focus and information model, scientists 
in large-scale research activities often need to collect data from 
multiple sources. Recently, researchers in geoinformatics and 
data science also discussed the need for a more comprehensive 
mineral information model to document the extensive facets of 
mineral data, such as the Global Earth Mineral Inventory (GEMI) 
proposed by (Prabhu et al. 2021b). Complementing these efforts 
are initiatives using semantic technologies to build knowledge 
graphs for mineral species, as a preparation to explore new ways 
for annotating and discovering mineral data shared on the Internet 
(Brodaric and Richard 2020).

The FAIR (findable, accessible, interoperable, and acces-
sible) data principles (Wilkinson et al. 2016) are now widely 
accepted in geoscience. Information models are an important 
part of FAIR data. More community efforts, such as through 
IMA, the Mineralogical Society of America (MSA), and the 
Geoinformation Committee of the International Union of 
Geological Sciences (IUGS-CGI), are needed to promote the 
quality and usefulness of the model outputs.

Informatics innovations needed for 
mineralogy

The previous sections of this paper (and many other informat-
ics papers focusing on various domains) have clearly emphasized 
the value that informatics methods provide to their respective 
domains (Collen 1986; Lord et al. 2004; Goble and Stevens 2008; 
Gauthier et al. 2019; Heberling et al. 2021). However, a point 
often missed or overlooked in scientific literature discussions 
is that innovations in data science and informatics are usually 
driven by diverse data sets available in various domains and the 
needs of the use-cases utilizing those data sets. In this section 
we discuss some of the interesting data science challenges we 
have observed while working with mineral data to try to answer 
some of the unanswered questions in geoscience.

In the following section we summarize four examples of 
mineral data challenges that provide interesting and unique 
problems that limit the usability of existing machine learning 
methods meant to extract meaningful information from data.

Small and sparse data framework
It has been widely publicized that we live in the “Age of Big 

Data” (Borgman et al. 2008; Lohr 2012; Wise and Shaffer 2015; 
Yu 2016; Wachter 2019), and understandably there has been a lot 
of research done into scaling-up algorithms, methods, software, 
and hardware needed to enable the exploration and use of very 
large data sets to gain valuable information. This focus has led to 
the creation and constant improvement of “big data frameworks,” 
which provide a roadmap on how to work with large data sets. 
However, mineralogy, along with many other fields in Earth and 
planetary sciences, provide a plethora of small and sparse data 
sets that do not fall into the realm of big data. These data sets 
therefore require the application of methodologies that lie out-
side the focus of traditional big data researchers. The next major 
hurdle for mineral informatics (and geoinformatics in general) is 
to work toward creating a framework for small and sparse data.

For example, mineral data collected by the CheMin X-ray 
diffractometer onboard the Mars Science Laboratory (Morrison 
et al. 2018c; Rampe et al. 2018) have few data points, having 
analyzed ~40 samples, each with around a dozen mineral spe-
cies (as of January 2022). The CheMin team used small (on 
the order of dozens to a few hundred data points) data sets of 
mineral composition and associated unit-cell parameters to build 
models capable of predicting the basic chemical composition of 
major mineral phases observed on Mars based solely on their 
unit-cell parameters (Morrison et al. 2018b, 2018c). However, 
the team wished to push their chemical prediction further, to 
predict complex, multi-element mineral compositions for the 
martian crystallographic data. To do so, Morrison et al. (2018b) 
assembled data sets of laboratory-analyzed complex, multi-
element mineral compositions and unit-cell parameters, which 
contained only a few hundred data points for each of the major 
mineral groups identified by CheMin. Morrison et al. (2018b) 
used the small data Label Distribution Learning approach to 
predict complex chemical compositions (up to 12 elements, 
in some mineral systems) of mineral samples collected by the 
CheMin instrument based on the unit-cell parameters of these 
samples. Significantly more work can be done here to increase 
the accuracy and performance of these models and such complex 

https://rruff.info/ima/
https://rruff.info
https://www.mindat.org
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data sets with small sample sizes provide an interesting and rare 
challenge to data scientists.

Mineral geochemistry often contains information related to 
the geologic, chemical, and/or biological processes and materials 
that went into their formation and any subsequent weathering 
and alteration. However, geochemical data are inherently sparse 
due to chemical variability in geologic deposits and materials, 
different elemental affinities among different mineral species, 
and analytical bias introduced by research aims or instrument 
limitations. The resulting frequency of “missing values” makes 
many geochemical data sets unsuitable for use with existing algo-
rithms designed for complete or near-complete data sets. A prime 
example of the sparseness of geochemical data are the garnet 
data set compiled by Chiama et al. (2020), which contains over 
95 000 geochemical analyses of garnet group mineral samples 
collected from various sources, ranging from large repositories 
(EarthChem, RRUFF, MetPetDB) to individual peer-reviewed 
literature. Even a compiled and curated data set such as this is 
considered sparse, largely due to the chemical variability among 
the various garnet mineral species, resulting in missing values in 
the chemical compositions of these samples (Chiama et al. 2022).   
For example, of the 95 000 analyses compiled, only five major 
elements (Mg, Fe, Ca, Al, and Si) are present and/or reported in 
most samples, while other elements, including Mn, Cr, and Ti, 
are much less common throughout the data set. An additional 
contribution to this sparseness is that studies may not analyze 
for all elements in a sample (e.g., limited to elements of interest, 
difficulty measuring light elements), resulting in missing values 
for which it is not known whether that element is present. Thus, 
while analyzing these data (using descriptive, prescriptive, or 
predictive methods) we need to consider these missing values 
and their effect on the results. Sparse data are not a problem new 
or unique to mineral data (Greenland et al. 2000, 2016; Sweeting 
et al. 2004; Rogers et al. 2018), but, as is the theme for the rest 
of this paper, we must learn from the successes and failures of 
other domains in addressing sparse data (Katz 1987; Shepperd 
and Cartwright 2001; Uzuner 2009; Derczynski et al. 2013).

Other examples of small and sparse data challenges can be 
encountered in efforts to understand other planets and moons 
including Venus and Titan through their mineralogy and geo-
chemistry. Frigid Titan’s exotic mineralogy, with water ice as a 
principal rock-forming mineral, oceans of liquid hydrocarbons, 
and varied postulated organic minerals, is mostly understood 
through laboratory analogs (Fegley et al. 1992; Bullock and 
Grinspoon 1996; Hashimoto and Abe 2005; Treiman and Bullock 
2012; Gilmore et al. 2017; Hazen 2018; Maynard-Casely et al. 
2018; Zolotov 2018; Cable et al. 2021).

Small and sparse data sets are a common occurrence in Earth 
and planetary science. Despite the limitations of the available 
information, the answers to key scientific questions are tied to 
these data sets. Therefore, an effort to create a framework to 
handle small and/or sparse data will be highly beneficial to sci-
entific research in Earth and planetary science. Many researchers 
are working on “high-dimensional, small sample size” (HDSSS) 
or “high-dimensional, low sample size” (HDLSS) and its use in 
data analytics (Hall et al. 2005; Golugula et al. 2011; Yata and 
Aoshima 2012; Liu et al. 2017; Shen et al. 2016). However, this 
area of research has received much less attention compared to 

its big data counterpart, and hence has lacked the synthesis and 
generalization that comes with the popularity and maturity of well 
established fields. The aforementioned examples clearly demon-
strate how such a framework would open paths for exploring very 
important scientific questions within and beyond mineralogy.

Data discovery
An increasing trend of data science in recent years is doing 

research with open data shared by others (Fox and Hendler 2014). 
Several recent scientific advances in mineral informatics also 
reflect that trend (Hazen et al. 2019). From the point of view of 
data users, an ideal situation is that they can efficiently find data 
portals on the Internet, data sets on the portals, or subsets of the 
data. In comparison, from the point of view of data providers and 
data managers, they need to organize the data with shared com-
munity standards, detailed metadata, and persistent and stable 
facilities to increase the reusability. As illustrated in the FAIR 
data principles for open data (Wilkinson et al. 2016), the first two 
key points to consider are the findability and accessibility of data. 
Correspondingly, three key technical items arise here. The first 
item is the metadata schema for describing the data sets. While 
there are many common-purpose metadata schemas, such as the 
Dublin Core, for describing data sets, for domain-specific data 
such as those in mineralogy there can also be specific metadata 
elements. The second item is the identifier for the data sets. 
Similar to the digital object identifier (DOI) for publications, 
data sets shared on the Internet should also have specific identi-
fiers to enable persistent and stable discoverability. The third 
item with respect to findability and accessibility is the protocol 
for retrieving metadata through the identifier of data sets. Com-
munity efforts such as DataCite (Brase 2009) have made solid 
progress toward that goal. Nevertheless, the wide implementation 
of those best practices for open data in geosciences, including 
mineralogy, still need more time. It is also important to remember 
that appropriate scientific credit must be given at every stage of 
informatics methodology, from the acquisition of data to data 
analytics, and finally the dissemination of the research products 
produced by the data analysis.

A very recent technical development regarding data discovery 
is the Data set Search Engine released by Google (Brickley et al. 
2019), which is able to index millions of data sets on thousands of 
data portals, including their identifiers or web links. End users of the 
data set search engine (https://datasetsearch.research.google.com, 
accessed 21 January 2023) have integrated access to thousands 
of data portals. When a data set is found on the engine, users can 
go to its original data portal page through the identifier or web 
link and then download. The Google Data set Search Engine is 
built on top of Schema.org, which is designed as a comprehensive 
metadata schema for annotating digital objects on the web. The 
annotated objects, such as data sets, will then be indexed by the 
search engines. As its usage is expanding, Schema.org also pro-
vides space for extending the metadata elements of certain objects. 
A potential here is to have specific metadata elements designed for 
data sets of mineralogy, and this should be based on community 
collaboration. In the past few years, the EarthCube community 
has leveraged a list of open geoscience data portals to develop 
the GeoCODES search engine (https://geocodes.earthcube.org, 
accessed 21 January 2023). It is also based on Schema.org but has 

https://datasetsearch.research.google.com
https://geocodes.earthcube.org
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made extensions specifically for the registration and discovery of 
geoscience data. Any future efforts on the findability and acces-
sibility of open mineralogy data can significantly benefit from the 
technical structure and experience of GeoCODES. Community 
agreements and standards, such as those developed by IMA, MSA, 
and IUGS-CGI, as well as best practices in existing data portals, 
such as those in RRUFF and mindat.org, will also be helpful to 
enrich the metadata of open mineralogy data.

Data processing
Dozens of data repositories contain a wealth of mineralogical 

information from which large data resources can be extracted. 
Web-scraping algorithms allow for the retrieval and storage of 
large amounts of data from web sources (Glez-Peña et al. 2014; 
Zhao 2017). Scraping algorithms in scripting languages such as 
Python or R allow users to extract and compile large amounts of 
data from web sources or journal articles in minutes or seconds, 
but the structure (or lack thereof) of webpages can slow the pro-
duction of new data resources. Open-access mineral databases 
tend to be very contributor friendly; thus, users can pick and 
choose which data to include for a particular entry. Recognizing 
the inconsistencies in the storage and representation of mineral 
attribute data within and across different mineralogical databases 
is essential when compiling large mineral data sets from open 
data sources.

Webpages associated with Webmineral and Mindat have 
hierarchical structures made up of Hypertext Markup Language 
(HTML), Extensible Markup Language (XML), or Cascading 
Style Sheet (CSS) elements that allow for the selection of nodes 
that can contain specific data needed by the user (Gunawan et al. 
2019). The ubiquitous occurrence or rarity of a mineral, relative 
interest among the scientific community in a mineral, as well as 
the age of discovery cause significant differences in the amount 
of information available for a mineral, driving the differences 
in the structure of these web pages. Webpages and digital PDFs 
associated with the Handbook of Mineralogy (Anthony et al. 
1990–2003) have very little structure, which places more impor-
tance on the use of keywords (e.g., space group or crystal system) 
or separators (e.g., each mineral attribute or property introduced 
may have a semicolon preceding the associated description) in the 
compilation of data. Nested conditional statements (i.e., if-else 
statements) are useful for compiling data from web databases 
that have variable or no structure, but this approach can be more 
time-consuming and prone to error. Some headers may be reused, 
such as “beta (β),” which is used as a descriptor of the refractive 
indices in biaxial minerals (Frazier et al. 1963; Gunter and Ribbe 
1993), and it can also refer to the geometry of the unit-cell of 
dimensions (Grove and Hazen 1974; Nesse 2013).

Quantifying and correcting bias
Critical to all of these aspects of data resource development 

and use is an understanding of and, where possible, modeling 
of the biases that exist in each of these systems. For example, 
significant biases occur in mineral sampling based on the physical 
appearance of the phase (e.g., large, brightly colored, euhedral 
crystals), the economic value, the scientific interest, proximity 
to major universities or research centers, and analytical technol-
ogy. Such biases can be corrected with models of each of these 

parameters (Hazen et al. 2015; Grew et al. 2017; Hystad et al. 
2019). Natural preservational biases are more complex, as it 
involves geologic history and mineral properties (e.g., chemistry, 
solubility, hardness), but work is underway to begin unraveling 
the history of preservational biases in mineral systems on Earth 
and other planetary bodies (Liu et al. 2019).

Informatics research as a socio-technical 
system

Research in the field of informatics is heavily dependent 
on interactions between data scientists and domain scientists 
(e.g., mineralogists and planetary scientists) (Ma et al. 2017). 
Conducting and applying informatics research is very much a 
socio-technical system (Fischer and Herrmann 2011). It is as 
much about the researchers, their interactions, the hypotheses 
generated, and the interpreting of results from visualizations or 
models as it is about the data, the algorithms, and the models. 
Collaborations in informatics include many iterations between 
data and domain scientists, starting from data explorations and 
problem formulation to interpreting the results and documenting 
the scientific insights learned from the data.

We recommend starting an informatics exploration with 
an in-person or virtual “datathon” (Anslow et al. 2016; Fritz 
et al. 2020). During this datathon, which usually lasts a day or 
two, collaborators mainly focus on nine aspects, as follows.  
(1) Interactions and discussions among data scientists and domain 
scientists to frame their goals and expectations. (2) Document 
the research questions to be explored. (3) Collate the data re-
sources required to explore the documented research questions.  
(4) Explore the methods needed to examine the data (both ana-
lytically and visually). (5) Construct a roadmap for dividing the 
research question and tasks into smaller, more tractable parts.  
(6) Leverage descriptive, prescriptive, and predictive methods 
to gain preliminary insights from the data. (7) Form short-term 
and long-term goals based on the preliminary results. (8) Docu-
ment the shortcomings of the methods explored and why these 
roadblocks hamper scientific exploration. And (9) document 
the innovation needs of both data science and domain science 
methods to overcome the previously documented hurdles. 

Not all of these steps need to be done during the two-day 
datathon; steps 1 and 2 can be completed beforehand. The main 
goal of conducting a datathon is to expedite and streamline the 
initial data exploration to gain preliminary results that can be 
examined by the domain scientist, while also allowing the data 
scientist to explore and understand the intricacies of the data at 
hand. Additionally, all collaborators gain an understanding of 
the shortcomings, needs, and opportunities of their data and of 
the current methods to address the desired scientific questions. 
This inventory of needs and opportunities in both the data sci-
ence and domain science can result in a datathon output of a list 
of projects and publications spurred by the creative and iterative 
processes of this closely collaborative effort.

After the initial datathon, each collaborator (or group of 
collaborators) has a plan of action for the projects and subtasks 
within the project they are leading. Subsequent communication 
and collaboration usually follow the preferred working model 
of the team. For example, weekly meetings between the group 
to discuss advances in the project or email communications be-



PRABHU ET AL.: WHAT IS MINERAL INFORMATICS? 1253

American Mineralogist, vol. 108, 2023

tween the team for the same purpose. The steps taken after the 
datathon and methods to communicate and collaborate change 
depending on the work style and comfort levels of the collabora-
tors. General recommendations for this step include “science of 
team science” best practices advocated by many communities 
(National Research Council 2015).

Implications: A vision for the future
Durable and information-rich, minerals are the only ancient 

relics that offer direct, solid glimpses of eons of planetary 
transformation (Hazen et al. 2022). It is important to extract the 
abundance of information contained in these mineral samples 
to improve our understanding of the evolution of our planet, our 
solar system, and the role our planet’s evolving geosphere played 
in the origin and proliferation of life. Key synergistic aspects of 
the ongoing paradigm shift in mineralogy includes systematic 
efforts to collect and curate mineralogical information in data 
resources that enable open and widespread dissemination, and 
the use of those data to make scientific discoveries.

As mentioned earlier in this paper, informatics methods have 
been followed, implemented, and improved upon in other fields 
over the past decades. The concept of “X-informatics” has also 
been around since its first conceptualization in 2007 (Gray and 
Szalay 2007; Hey 2009), and over the past decade there has been 
a steady decline in researchers conducting informatics research 
in the silos of their respective fields. When planning for a new 
paradigm like mineral informatics, it is important to learn from 
successes and failures of more mature fields of informatics (Lord 
et al. 2004; Goble and Stevens 2008; Heberling et al. 2021) and 
modify the methods developed by past researchers to apply them 
to comprehensively address our needs as a community.

Over the last decade, there have been some efforts at collating 
various data resources in the geosciences and providing these 
data to researchers with minimal barriers and maximum interop-
erability. These efforts include OneGeology (Jackson 2010), 
OneGeochemistry (Chamberlain et al. 2021; Wyborn et al. 2021), 
and OneStratigraphy (Wang et al. 2021). The OneGeochemistry 
initiative also includes plans to develop best practices for FAIR 
geochemical data, governance models to ensure participation and 
trust, and a business model to ensure long-term sustainability 
(https://www.earthchem.org/communities/onegeochemistry/; 
accessed 21 January 2023). Efforts to improve the access, usage, 
and impact of mineral data resources can learn from the successes 
and challenges faced by such global initiatives. Developing a set 
of best practices and recommendations for creating, linking, and 
releasing mineral data would improve the mineral data landscape 
and make it easier for researchers to produce and use mineral 
data without too many barriers.

Just as increasing the findability, accessibility, interoper-
ability, reusability, and other important aspects of mineral data 
management and stewardship, obtaining scientific insights from 
mineral data using data-driven methods are another key facet of 
mineral informatics. For this, too, we can look to and learn from 
the success and failures of other domains by applying informatics 
methods to answer their research questions. We hope the research 
directions for informatics and other fields like mineralogy, 
planetary science, and other related fields using mineral data 
that have been documented in this paper act as an initial step 

toward the ultimate goal of systematizing data-driven scientific 
exploration using mineral data.

Mineralogy is facing new opportunities and challenges 
with the increased interest in and applications of data-driven 
methods. We believe the next paradigm for the field of mineral-
ogy is that of mineral informatics. Mineral informatics focuses 
on deciphering the patterns and trends hidden in mineralogical, 
geochemical, and related data and using these patterns to answer 
scientific questions, thus making important new discoveries. In 
this paper, we have shown how the study of minerals is essential 
to improving our understanding of the evolution of our planet, 
our solar system, and more. We present a broad methodology 
for the study and use of mineral informatics methods and docu-
ment the needs of the field and important scientific questions 
that may be answered using mineral informatics. We reiterate 
the symbiotic relationship between data scientists and domain 
scientists (e.g., mineralogists, planetary scientists, biologists) to 
make continuous and sustainable scientific progress.

In summary, our vision for the next decade of mineralogi-
cal research is built upon the systematic and coordinated study 
of mineral data and of the data science methods used to gain 
scientific insights.
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