Crocobelonite, CaFe$_3$+(PO$_4$)$_2$O, a new oxyphosphate mineral, the product of pyrolytic oxidation of natural phosphides

Sergey N. Britvin1,2,*, Mikhail N. Murashko1, Maria G. Krzhizhanovskaya1, Natalia S. Vlasenko3, Oleg S. Vereshchagin4, Yevgeny Vapnik4, and Vladimir N. Bocharov3

1Institute of Earth Sciences, Saint-Petersburg State University, Universitetskaya Nab. 7/9, St. Petersburg, 199034, Russia
2Nanomaterials Research Center, Kola Science Center, Russian Academy of Sciences, Fersman Str. 14, Apatity, 184200, Russia
3Geomodel Resource Center, Saint-Petersburg State University, Ulyanova Street 1, St. Petersburg, 198504, Russia
4Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva, 84105, Israel

ABSTRACT

Crocobelonite, CaFe$_3$+(PO$_4$)$_2$O, is a new natural oxyphosphate discovered in the pyrometamorphic complexes of the Hatrurim Formation in Israel and Jordan. Crocobelonite-bearing assemblages contain a series of anhydrous Fe-Ni phosphates, hematite, diopside, anorthite, and phosphides—barringerite FeP, transjordanite Ni$_3$P, murashkoite FeP$_2$, halamishite Ni$_3$P$_4$, and negevite Ni$_5$P$_3$. Crocobelonite forms submillimeter-sized aggregates of prismatic to acicular crystals of saffron-red to pinkish-red color. There are two polymorphic modifications of the mineral whose structures are interrelated by the unit-cell twinning. Crocobelonite-2O is orthorhombic, $Pnma$, $a = 14.2757(1)$, $b = 6.3832(1)$, $c = 7.3169(1)$ Å, $V = 666.76(1)$ Å3, $Z = 4$. This polymorphic modification is isotopic with synthetic oxyphosphate AV_3(PO_4)$_2$O where $A = Ca$, Sr, Cd. The crystal structure has been refined to R$_p = 0.71\%$ based on powder XRD data, using the Rietveld method and the input structural model obtained from the single-crystal study. Chemical composition (electron microprobe, wt\%) is: CaO 16.03, MgO 0.56, Fe$_2$O$_3$ 43.37, Al$_2$O$_3$ 0.33, SiO$_2$ 0.32, P$_2$O$_5$ 39.45, Total 100.06. The empirical formula based on O = 9 apfu is Ca$_{2+}$Fe$^{3+}$(Mg$_{0.05}$Al$_{0.02}$)$_{2.01}$(P$_{0.01}$Si$_{0.02}$)$_{2.00}$O$_{10.00}$ with $D_{calc} = 3.555$ g/cm3. The strongest lines of powder XRD pattern $[d(\AA)l/(hk\ell)]$ are: 6.54(16)(200), 5.12(26)(201), 3.549(100)(102), 3.200(50)(401), 2.912(19)(220), 2.869(40)(411), 2.662(21)(501). Crocobelonite-1M is monoclinic, $P2_1/m$, $a = 7.2447(2)$, $b = 6.3832(1)$, $c = 7.3993(2)$ Å, $\beta = 106.401(2)$°, $V = 328.252(14)$ Å3, $Z = 2$. This polymorphic modification does not have direct structural analogs. Its crystal structure has been solved and refined based on the single-crystal data. $R_p = 1.81\%$. Chemical composition is: CaO 15.56, MgO 0.16, NiO 0.78, Fe$_2$O$_3$ 41.28, Al$_2$O$_3$ 0.45, V$_2$O$_5$ 0.42, Cr$_2$O$_3$ 0.23, TiO$_2$ 0.79, P$_2$O$_5$ 39.94, Total 99.61, corresponding to the empirical formula (O = 9 apfu) Ca$_{2+}$Fe$^{3+}$(Ni$_{0.06}$Ti$_{0.01}$Al$_{0.02}$)$_{2.00}$V$_{0.02}$Cr$_{0.02}$P$_{2.00}$O$_{10.00}$ with $D_{calc} = 3.604$ g/cm3. The strongest lines of powder XRD pattern $[d(\AA)l/(hk\ell)]$ are 6.98(17)(100), 4.40(22)(101), 3.547(100)(301), 3.485(21)(200), 3.195(50)(020), 2.855(38)(102), 2.389(33)(T22). Crocobelonite represents a novel type of phosphate mineral formed by oxidation of phosphate minerals at temperatures higher than 1000 °C and near-atmospheric pressure (pyrolytic oxidation).

Keywords: Phosphate, oxyphosphate, oxophosphate, phosphide, pyrolytic oxidation, crystal structure, new mineral, pyrometamorphism, Dead Sea, Middle East, Hatrurim Formation

INTRODUCTION

Since the discovery of combusted sedimentary beds in the Judean Desert (Picard 1931) and the recognition of similar rocks elsewhere in Israel, Palestinian Authority and Jordan (Bentor et al. 1963; Gross 1977; Khoury and Nassir 1982a, 1982b; Burg et al. 1992), pyrometamorphic complex known as the Hatrurim Formation or the Mottled Zone (Fig. 1) has attracted substantial mineralogical interest. A combination of high-temperature combustion processes, intense hydrothermal activity and weathering in a desert climate has led to the emergence of dozens of exotic mineral species (e.g., Sokol et al. 2014, 2019; Britvin et al. 2015, 2022a; Khoury 2020). As an example, the anomalous chromium mineralization is represented by a suite of Cr$^{3+}$ species, such as bentorite Ca$_3$Cr$_2$(SO$_4$)$_3$(OH)$_2$·2H$_2$O (Gross 1980) and ellinaite CaCrO$_4$ (Eckhardt and Heimbach 1963), hashemite BaCrO$_4$ (Hauff et al. 1979), perovskite-supergroup chondrites (Weber and Bischoff 1994); perovskite-supergroup minerals: vapnikite, the double perovskite Ca$_{10}$Ca$_5$UO$_{24}$ (Sharygin et al. 2013);...