Magnetic contributions to corundum-eskolaite and corundum-hematite phase equilibria: A DFT cluster expansion study

DANIEL J. POPE^{1,}[†], AURORA E. CLARK^{1,*}, MICAH P. PRANGE², AND KEVIN M. ROSSO²

¹Department of Chemistry, Washington State University, Pullman, Washington 99164, U.S.A. ²Pacific Northwest National Laboratory, Richland, Washington 99532, U.S.A.

ABSTRACT

Magnetic contributions have the potential to significantly influence predicted phase stability within alloy and mineral mixing phase diagrams, yet have been historically challenging to incorporate due to a significant increase to phase space sampling. In this work, we employ a computational protocol that includes spin orientation as an additional configurational component within multi-component cluster expansions between magnetic and non-magnetic metal oxide alloys [calculated using density functional theory (DFT) and the generalized gradient approximation]. This approach was used to determine the effect of magnetic contributions to corundum-eskolaite and corundum-hematite phase equilibria from first principles.

Two-component cluster expansions of the magnetic components of eskolaite and hematite were first performed showing the ability of this method to properly calculate their respective magnetic properties. Two-component cluster expansions were then performed for non-magnetic Al(III) and ferromagnetic Cr(III) and Fe(III), and phase diagrams were calculated for later comparison. Finally, a non-magnetic Al(III) and "up" and "down" magnetic configurations for anti-ferromagnetic Cr(III) and Fe(III) were performed. Magnetic contributions to the calculated phase diagram for the corundum-eskolaite system were shown to be inconsequential but are vital for accurate determination of the corundum-hematite solvus.

Keywords: Phase diagram, mineral mixing, magnetic states, corundum