Single-crystal elasticity of (Al,Fe)-bearing bridgmanite up to 82 GPa Suyu Fu^{1,*}, Yanyao Zhang¹, Takuo Okuchi^{2,}‡, and Jung-Fu Lin^{1,}†

¹Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, U.S.A. ²Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193, Japan

ABSTRACT

Thermoelastic properties of mantle candidate minerals are essential to our understanding of geophysical phenomena, geochemistry, and geodynamic evolutions of the silicate Earth. However, the lower-mantle mineralogy remains much debated due to the lack of single-crystal elastic moduli (C_{ii}) and aggregate sound velocities of (Al,Fe)-bearing bridgmanite, the most abundant mineral of the planet, at the lower mantle pressure-temperature (P-T) conditions. Here we report single-crystal C_{ii} of (Al,Fe)-bearing bridgmanite, $Mg_{0.88}Fe_{0.1}Al_{0.14}Si_{0.90}O_3$ (Fe10-Al14-Bgm) with $Fe^{3+}/\Sigma Fe = \sim 0.65$, up to ~82 GPa using X-ray diffraction (XRD), Brillouin light scattering (BLS), and impulsive stimulated light scattering (ISLS) measurements in diamond-anvil cells (DACs). Two crystal platelets with orientations of (-0.50, 0.05, -0.86) and (0.65, -0.59, 0.48), that are sensitive to deriving all nine C_{ii} , are used for compressional and shear wave velocity ($v_{\rm P}$ and $v_{\rm S}$) measurements as a function of azimuthal angles over 200° at each experimental pressure. Our results show that all C_{ii} of singe-crystal Fe10-Al14-Bgm increase monotonically with pressure with small uncertainties of 1–2% ($\pm 1\sigma$), except C₅₅ and C_{23} , which have uncertainties of 3–4%. Using the third-order Eulerian finite-strain equations to model the elasticity data yields the aggregate adiabatic bulk and shear moduli and respective pressure derivatives at the reference pressure of 25 GPa: $K_s = 326 \pm 4$ GPa, $\mu = 211 \pm 2$ GPa, $K'_s = 3.32 \pm 0.04$, and $\mu' = 1.66 \pm 0.02$ GPa. The high-pressure aggregate v_s and v_p of Fe10-Al14-Bgm are 2.6–3.5% and 3.1-4.7% lower than those of MgSiO₃ bridgmanite end-member, respectively. These data are used with literature reports on bridgmanite with different Fe and Al contents to quantitatively evaluate pressure and compositional effects on their elastic properties. Comparing with one-dimensional seismic profiles, our modeled velocity profiles of major lower-mantle mineral assemblages at relevant P-T suggest that the lower mantle could likely consist of about 89 vol% (Al,Fe)-bearing bridgmanite. After considering uncertainties, our best-fit model is still indistinguishable from pyrolitic or chondritic models.

Keywords: Single-crystal elasticity, bridgmanite, lower mantle, pyrolite, chondrite